
PCL-848A/B

MULTIFUNCTION IEEE-488

INTERFACE CARD

Part No. 2003848000 Rev. A1
Printed in Taiwan Apr 2001

PCL-848A/B MULTIFUNCTION

IEEE-488 INTERFACE CARD
USER’S MANUAL

This documentation and software routines contained in the PCL848A/B software
diskette are copyrighted 1989 by Advantech Co.. Ltd. All rights are reserved.
Advantech Co., Ltd. reserves the right to make improvements of the products
described in this manual at any time without notice.

No part of this manual may be reproduced, copied, translated or transmitted, in any
form or by any means without the prior written permission of Advantech Co., Ltd.
Information provided in this manual is intended to be accurate and reliable.
However, Advantech Co., Ltd. assumes no responsibility for its use; nor for any
infringements of rights of third parties which may result from its use.

PC-LabCard is a trademark of Advantech Co., Ltd. IBM and PC are trademarks of
International Business Machines Corporation. MSDOS and QuickBASIC are trade
marks of Microsoft Corporation BASIC is a trademark of Dartmouth College. Intel is
a trademark of Intel Corporation. Nl PC-II is a trademark of National Instruments.

Contents
1. GENERAL INFORMATIQN.. 1

1.1. Introduction to the Product ... 1
1.2. Description of the Documentation .. 2

2. INSTALLATION .. 4
2.1. Inspection .. 4
2.2. Switch and Jumper Setting ... 4

2.2.1. I/O Base Address and Wait State Setting .. 5
2.2.2. Firmware Address Setting ... 6
2.2.3. Operating Mode Setting ... 7
2.2.4. DMA Level Setting .. 7
2.2.5. Interrupt Level (IRQ) Setting .. 7

2.3. Installing the Card ... 7
2.3.1. Preparation ... 7
2.3.2. Installing the Card into a PC ... 8
2.3.3. Function Check ... 9

3. PROGRAMMING REFERENCE .. 10
3.1. Introduction ... 10
3.2. Using the BASIC CALL Statement ... 11
3.3. Using QuickBASIC and BASIC Compiler ... 13
3.4. The IEEE-488 Driver Routines ... 13

3.4.1. AHORT ... 14
3.4.2. DEVCLR (Device Clear) Purpose : ... 15
3.4.3. DEVICE .. 16
3.4.4. ENTER Purpose : ... 17
3.4.5. ENTERA ... 18
3.4.6. EOL .. 20
3.4.7. INIT ... 21
3.4.8. LLO ... 23
3.4.9. LOCAL .. 24
3.4.10. OUTPUT Purpose : .. 25
3.4.11. OUTPUTA .. 26
3.4.12. PPOLL .. 28
3.4.13. PPOLLC ... 29
3.4.14. PPOLLU ... 31
3.4.15. REHOTE .. 32
3.4.16. SEND ... 33
3.4.17. SPOLL .. 35
3.4.18. STATUS Purpose : ... 36
3.4.19. TIMEOUT Purpose : ... 37

3.4.20. TRIGGER Purpose : ... 38
3.4.21. ERRPTR .. 39

4. PROGRAMMING TECBNIQUES .. 41
4.1. Interactive Data Transfer .. 41
4.2. Set IEEE-488 Printer .. 43
4.3. Voltage Measurement with a DVM ... 44
4.4. AD500 PMU Programming ... 45
4.5. Multiple Device Triggering .. 47
4.6. Interrupt Handling ... 49

5. ADVANCED PROGRAMM1N~ TECBNIQUES 51
5.1. Direct Memory AcceAs (DMA) .. 51
5.2. Transfer Speed ... 54
5.3. Interrupt ... 55
5.4. Hore about the SEND Command ... 56

6. DIGITAL OUTPUT ... 57

7. TBEORY OP OPERATION.. 58
7.1. Introduction ... 58
7.2. Block Diagram Description ... 58

8. TROUg3LB5BOOTING .. 60
8.1. Introduction ... 60
8.2. Periodia Maintenance ... 60
8.3. Troubleshooting Procedure ... 60
8.4. Part List ... 62

9. BUS TUTORIAL .. 64
9.1. General Bus Description ... 64
9.2. Bus Structure .. 66

9.2.1. IEEE-488 Connector Pin Assignment ... 66
9.2.2. IEC-625 Connector Pin Assignment .. 67

9.3. Management Lines ... 67
9.4. Bus Commands .. 68
9.5. Servioe Request and Serial Polling .. 68
9.6. Parallel Polling .. 69
9.7. Code Summary ... 69
9.8. Randshake Lines .. 71
9.9. Other Bus Lines .. 73
9.10. Bus Operating Considerations .. 73

10. ASCII TABLE .. 74

11. NEC7210 RBAD / WRITE REGISTSR ... 76

12. SUMMARY OF TBE IEEE-488 LIBRARY FUNCTIONS 77

Figures

Fig. 2.2 Location of switches and jumpers ... 4

Fig. 7-1 PCL-848A/B Block Diagram .. 59

CHAPTER 1 GENERAL INFORMATIQN 1

1. GENERAL INFORMATIQN

1.1. Introduction to the Product

The PCL-848A/B IEEE-488 interface card is a valuable addition to your PC that
allows you to communicate with over 2000 products, made by over 200 manufactur-
ers, in over 14 countries. The IEEE488-1978 standard that this IEEE-488 card
implements is the most widely used international standard for information transfer
between computer and electronic instruments. There are numerous publications and
articles that may be used in conjunction with this manual to assist you to understand
the interface standard. The IEEE reference document may be ordered by writing to the
IEEE Service Center, 445 Uoes Piscataway, NJ 08854, USA.

The IEEE-488 interface card provides the hardware (electrical and mechanical) and
software required for you to interface your PC to the IEEE-488 bus. The software is
packaged in read-only-memory (firmware) to provide versatile and easy-to-use IEEE-
488 function extensions for your current programming language or operating system.
Firmware cannot be accidentally erased or overwritten and it is always available for
use by application programs. This manual provides a programming reference (Section
3.) and programming techniques (Section 4. and 5.) to assist you in writing your own
application programs.

The key features of this interface card include:

* Operating in one of the two modes (switch selectable).
Mode A : Compatible with PCL-748 and use the on-board firmware driver.
Mode N : Software compatible with National Instrument PC-II and IBM-PC GP-
IB adaptor and use the driver and software developed for them.

* Implementation of the entire IEEE-488 standard.

* Powerful and easy-to-use software command set. Fewer arguments and simple
initialization.

* Software driver is in on-board firmware. Requires no additional disk operation when
using BASIC or Turbo Pascal.

* On-board RAM for working space. No system memory space is needed for the
IEEE-488 interface operation.

* Built-in 16 bit digital output port provides a convenient and economical solution for
signal switching and digital control applications. The D/O port is compatible with
the daughter boards: PCLD-785 Relay Output Eoard, PCLD-786 SSR & Relay
Driver Board and PCL-789 Amplifier Multiplexer Board.

2 PCL-848AB User's Manual

BASICA, BASIC compiler and Quick-BASIC are supported as standard languages. C
and Pascal language support packages can be ordered separately as PCL-748-C and
PCL-748-P.

The software can change the PC printer port to an IEEE-488 device. The PrtSc (print
screen) key, all print statements, word processing and spreadsheet programs that use
printer driver in BIOS can use IEEE-488 printers.

* High speed direct memory access (DMA) with the ability to handle 64K byte
arrays.

* Programmable system controller, active controller or device functions.

* All device functions, addresses, interrupt conditions, and parallel poll responses are
programmable.

* Automatic initialization. Interface parameters are set to default when starting using
the interface. Parameters can still be changed by calling the initialization routine.

* DIP switch selectable wait states (0/2/4/6 wait states) to ensure the compatibility to
very high speed PC’s.

* PCL-848A offers the connectors of the IEEE-488 standard while PCL-848B uses
the 25 pin D type connectors for the IEC-625 standard.

* Each device on the IEEE-488 bus can be assigned with its own terminator.

1.2. Description of the Documentation

Information in this manual is given at several levels of detail and is organized to allow
you to work through the TUTORIAL, PROGRAHMING REFERENCE and
PROGRAMMING TECHNIQUES sections.

If you have no IEEE-488 experience, go to Section 9. after this section.

The IEEE-488 TUTORIAL in Section 9. is designed to give you a thorough under-
standing of how the IEEE-488 General Purpose Interface Bus (GP-IB) works. Topics
in the TUTORIAL should be read in sequence if you have no IEEE-488 background
and intend to write application programs. With a solid understanding of the basic
IEEE-488 concepts, followed by returning to the PROGRAMMING REFERENCE,
and the PROGRAMMING TECHNIQUES, you should be able to program almost
any IEEE-488 bus system without interface problems.

CHAPTER 1 GENERAL INFORMATIQN 3

If you are familiar with the basic concepts of the IEEE-488 bus you may want to
begin reading the Section 3. PROGRaI~MING REFERENCE. This section describes
the statement syntax and techniques to use the IEEE-488 driver in the firmware.
Section 4. PROGRAMMING TECHNIQUES will show you how the functions are
used in typical applications and also provide you with some useful program examples
for your own applications. All the examples are written in BASICA language.

If you want to know more details about this IEEE-488 interface card, please refer to
Section 5. ADVANCED PROGRAMMING TECHNIQUES. This section tells you
how to set DMA, how to modify transfer speed and how to use interrupts.

This manual is intended to be accurate and is organized to give you a quick reference
for programming ideas and the concepts of the IEEE-488 bus.

4 PCL-848AB User's Manual

2. INSTALLATION

2.1. Inspection

When unpacking, check the unit for signs of shipping damage (damaged box, scratches,
dents, etc). If there is any damage to the unit or it fails to meet specifications, notify
your localt sales representative immediately. .

2.2. Switch and Jumper Setting

This IEEE-488 interface card has two DIP switch (SW1 and SW2), 1 one slide switch
(SW3) and three jumpers (JP1, JP2 and JP3). The: setting must be coincident with the
application program.

Legend:

CN1: GP-IB connector CN2: Digital output
connector

SW1: I/O port base address and wait states
SW2: Firmware base address SW3: Operation
mode (PCL-748 or NI PCÑI I)

JP1: DACK channel JP2: DRQ channel JP3:
IRQ level Fig. 2.2 . Location of switches and
jumpers

Fig. 2.2 Location of switches and jumpers

CHAPTER 2 INSTALLATION 5

2.2.1. I/O Base Address and Wait State Setting

The I/O ports base address and the number of wait states are selectable by the 8
position DIP switch SW1. The base address can be set anywhere in the I/O address
area from hex 200 to hex 3F8 and the wait states can be set to 0, 2, 4, or 6. Refer to
3 Fig. 2.2. for the locations of the DIP switches SW1. Factory settings of these
switches are hex 2B0 and zero wait state.

This multifunction interface card takes 16 addresses of I/O port following the base
address. The digital output port takes the addresses of BASE+0 and BASE+1 and the
IEEE-488 interface takes the addresses from BASE+8 to BASE+15. When using the
IEEE-488 driver routines, the IEEE-488 interface base address must be set to BASE+8
where the BASE is the set by DIP switch SW1. The default address of the IEEE-488
interface is then hex 2B8.

The switch settings for various base addresses and wait states are illustrated as below:

Note : - 0N = 0, 0FF = 1
- 1..8 are switch positions
- W0..W1 correspond to wait state
- A4..A8 correspond to address lines of the PC bus
- * means factory setting

Switch position (SW1)

1 2 3 4 5 Occupied
A8 A7 A6 A5 A4 Addresses

--
0 0 0 0 0 200-20F
0 0 0 0 1 210-21F

.

.

.
* 0 1 0 1 1 2B0-2BF

.

.
1 1 1 1 0 3E0-3EF
1 1 1 1 1 3F0-3FF

--

Switch position (SW1)
7 8 Wait state(s)

W1 W0
--
* 0 0 0

0 1 2
1 0 4
1 1 6

--

6 PCL-848AB User's Manual

2.2.2. Firmware Address Setting

The IBEE-488 interface driver routine is stored in the on-board i EPROM. The
memory address of this firmware can be selected by SW2. The memory segment of
the firmware can be from hex 8000 to s hex FC00. Factory setting is hex D000.

The range of these locations is out of the 640K system memory of i the IBM PC, PC/
XT and PC/AT. However, choice of this location must be made to avoid any conflict
with other interface cards. When two or more IEEE-488 interface cards are used in one
PC, the location settings must be different in order to have different working space
although the firmware code is the same.

The SW2 positions l to 5 determine the address bits Al8 to Al4. ~ Address bit A19 is
always 1. Address bits below A13 (included) are not cared.

Memory Location Segment SW2-1 SW2-2 SW2-3 SW2-4 SW 2-5
(hex) A18 Al7 A16 A15 A14

8000 0 0 0 0 0
8400 0 0 0 0 1
8800 0 0 0 1 0

.

.

Reserved A000 0 1 0 0 0
.
.

CRT Display B000 0 l 1 0 0
.
.

Factory Setting D000 1 0 1 0 0
.
.

System ROM F000 1 1 1 0 0
FC00 1 1 1 1 1

* 0 : ON l : OFF

This multifunction IEEE-488 interface card takes 10K bytes of the memory space
including 8K byte RON and 2K byte RAM. The starting . address of the working
RAM is offset 8K bytes from the ROM starting address.

CHAPTER 2 INSTALLATION 7

2.2.3. Operating Mode Setting

SW3 is a slide switch to select the operating mode. When it is set to “A”, this card is
compatible with the easy-to-use PCL-748 IEEE-488 interface card except there is no
real time clock. When SW3 is set to “N”, this card becomes NI PC-II compatible.3

It depends on the users which mode is selected. If the software package is already
developed for PC-II, then mode “N” can be used to eliminate the software effort.
Dowever, for new software developing, mode “A” is recommended to get all the
benefit of PCL-848A/B. PCL-848A/B does not support the software driver to use
mode “N” and this manual offers the information for mode “A” 3 operation only.

2.2.4. DMA Level Setting

The PCL-848A/B is designed to permit DMA (Direct Memory Access) = data
transfer between IEEE-488 bus and the system RAM of the PC. The DMA level is
set by JP1 and JP2. The JP1 is for DACK signal path while the JP2 is for DRQ. The
settings of JP1 and JP2 must be coincident. For example, if the JP1 is set to DACK 3,
then JP2 must be set to DRQ 3.

2.2.5. Interrupt Level (IRQ) Setting

The PCL-848A/B is designed to permit access to interrupt level 2 up to level 7 and
the interrupt is initiated by the NEC7210 GP-IB interface controller. The selection is
made by setting JP3.

Note : Although the IRQ level can be set from IRQ 2 to IRQ 7 _ on the
board, the firmware supports IRQ 2, 3, 5, and 7 only.

2.3. Installing the Card

2.3.1. Preparation

Discharge any static electricity by touching the back of the system unit before you
handle the board. You should avoid contact with materials that create static electricity
such as plastic, vinyl, and styrofoam.

8 PCL-848AB User's Manual

The IEEE-488 interface card is setup at the factory of default setting:

Jumper/Switch Selection Default setting

SW1 1-5 I/O port base address Hex 2B0
SW1 7-8 Wait states 0
SW2 Firmware base address Hex D000
SW3 Operating mode A
JP1 DACK level 1
JP2 DRQ level 1
JP3 IRQ level 7

Refer to Section 2.2. for other configurations.

2.3.2. Installing the Card into a PC

The procedure to install the IEEE-488 interface card is as following:

1.Turn off the computer and any peripheral devices (such as printers and monitors).

2.Disconnect the power cord and any other cables from the back of the computer.
Turn the system unit so the back of the . unit faces you.

3.Remove the system unit cover (See your computer user’s guide if necessary).

4.Locate the expansion slots at the rear of the unit and =; choose any unused slot.

5.Remove the screw that secures the expansion slot cover to the system unit. (Save
the screw to secure the IEEE-488 interface card retaining bracket).

6.Carefully grasp the upper edge of the IEEE-488 interface 3 card. Align the hole in
the retaining bracket with the hole on top of the expansion slot, and align the gold
striped edge connector with the expansion slot socket. Press the board firmly into
the socket.

7.Replace the screw in the expansion slot retaining bracket.

8.Replace the system unit cover. Connect the cables you ~emoved in step 2.

CHAPTER 2 INSTALLATION 9

2.3.3. Function Check

Confirm proper operation by connecting an IEEE-488 instrument to i the bus and
attempting to operate it with a program written in BASIC.

Here is an example procedure using an HP3478A digital voltmeter s and a short
BASIC program.

1.Connect the HP3478A DVM to the IEEE-488 bus connector Of this card on the
back of the PC with a standard IEEE-488 s cable. On the PCL-848B, the connector
is 25 pin D type defined by IEC-625 and a PCL-15488-2 IEC-625 to IEEE-488
cable must be used.

2.Set the device address of the HP3478A DVM to 23.

3.Turn on the HP3478A DVM and the PC.

4.Get into BASICA or GWBASIC environment.

5. Key in the following BASIC statements:

10 DEF SEG=&BD000
20 OUTPUT%=3 : ENTER%=6
30 ADDR%=23 ‘GP-IB address of up3478A
40 TMP$=”F1" ~UP3478A DVM programming code
50 CALL OUTPUT%(ADDR%,TMP$)
60 FOR I=1 TO 10
70 D$=SPACE$(80)
80 CALL ENTER%(ADDR%,D$)
90 PRINT D$
100 NEXT I
110 END

6. Execute the program. It will display the 10 readings i measured by the HP3478A
DVM and thus confirm proper ~ operation.

If the system fails this test, check for these common problems:

1. The instrument requires a special terminator. Check the instruments instruction
manual and Section 3. of this manual.

2. The programming command syntax for the instrument may be incorrect. Check the
examples in the instrument manual.

3. Check all electrical connections.

If there is still any problem, contact your local sales representative for further
assistance.

10 PCL-848AB User's Manual

3. PROGRAMMING REFERENCE

3.1. Introduction

The PCL-848A/B interface card contains the resident firmware that provides IEEE-
488 language extensions for your PC. The firmware (software programmed into a read-
only-memory) appears transparent to the users and the function inside is called by the
IEEE-488 commands.

All of the routines in the firmware are written in assembly language to insure maxi-
mum data transfer rates. Each routine combines bus error checking. The routines also
check parameter values to insure that appropriate bus protocol is followed.

The routines in the firmware transfer commands and data on the IEEE-488 BUS
through the use of statements that are given English I language names like OUTPUT,
ENTER and INIT. Statement OUTPUT sends a data string to the IEEE-488 BUS in
much the same way as <PRINT “string”> sends data to the screen. Statement ENTER
looks] for data coming from the IEEE-488 BUS, similar to the way <INPUT X$>
waits for a keyboard entry to assign to the string variable X$. Statement INIT clears
the interface and sets up specific operating modes on the interface card as the CLS
clears the screen and establishes specific operating conditions.

The data strings that you include in a SEND statement can be as general as the strings
you would use in a <PRINT> statement. The SEND function interprets IEEE-488
commands and data in any order that you choose. It also allows you to build powerful
commands that can be assigned to a single string variable that has a name and purpose
that is meaningful to you. The IEEE-488 BUS commands are separated by one or
more spaces. There is no difficult syntax to learn and only standard IEEE-488
mnemonics are used. The function of each mnemonic is performed exactly as defined
in the IEEE-488-1978 standard.

The firmware converts your command and data strings to specific control codes for
the IEEE-488 bus controller chip. It also passes back received data and interface status
conditions to your program. Received information may be used directly by your
program and the status codes (those returned by the STATUS function) may be used
to determine various interface operating conditions or to detect syntax errors in the
statements.

The next section discusses the CALL statement of BASICA and QuickBASIC. All of
the examples are given in BASICA, the syntax and use of each function is similar to
those of QuickBASIC version 2.0, 3.0 and 4.0.

CHAPTER 3 PROGRAMMING REFERENCE 11

3.2. Using the BASIC CALL Statement

The firmware routines on the IEEE-488 interface card, can be thought of as BASIC
language extensions. The extensions consist i of the statements ABORT, CLEAR,
ENTER, ENTERA, EOL, INIT, LLO, LOCAL, OUTPUT, OUTPUTA, PPOLL,
PPOLLC, PPOLLU, REMOTE, SEND, SPOLL, STATUS, TIMEOUT, TRIGGER
and ERRPTR. These routines allow ~ the PC to execute much faster because they are
written in assembly language. Another advantage is that the statement names only
represent address offsets and these offsets may be given any name that you prefer.

Calling the routines in the firmware when using BASICA requires three steps.

1.The location of the firmware routines must be defined using a DEF SEG statement.
This statement defines the current is egment address of the firmware and it is
determined by the setting of SW2. Since the factory setting is hex D000, as
statement as following is required.

DEF SEG = &HD000

Note: In most cases, the default setting of SW2 (hex D000) i is all right
for operation. Keep this setting unless another add-on card
occupies this memory space and cannot be changed.

2.The called routine must be located within the segment as defined by an offset
variables. For example, the OUTPUT routines has an offset of 3 and a statement to
define the offset variables is:

OUTPUT% = 3

Note: The OUTPUT% variabLe can be other variable names.

3.The parameters needed by this routine must be defined ~‘ according to the require-
ment of the application. Then, the s routine is executed by using a CALL statement.
The state ments are such as:

ADDR% = 23
D$ = “F1RA”
CALL OUTPUT%(ADDR%,D$)

Additional information on the DEF SEG and CALL statements is available in your
BASIC manual.

12 PCL-848AB User's Manual

Every called routine must define its entry address with an offset from the current
segment. For ease of reference all IEEE-488 routine offsets are at three byte incre-
ments and start at the top of the segment. For example, the INIT routine is at an
offset of 0 (zero), the OUTPUT routine is at an offset of 3, the ENTER routine is at
an offset of 6, and so on.

Please note that the program offsets must be entered exactly as shown for each
interpreter routine. The offsets determine where the program will branch and an
improper location can cause the PC to ignore all inputs except the power switch. This
is true of all BASIC CALL subroutines and is not a limitation of the interface board.
When you assign the offset, you are explicitly telling the CPU of the PC where to
look for its next instruction. Because it is running an assembly language routine, it
cannot check the validity, purpose, or use of each instruction the way it does as with
BASIC instructions. For that reason, it depends on receiving the proper offset address
and then assumes that the instructions are correct. The DEF SEG statement and all
offset address may be assigned with a single BASIC statement and never require
reassignment within your program. That means you can “set it and forget it” and get
on with the job of solving your program rather than being concerned about addressing
details.

Each routine also access the parameters those are received from or passed back to the
BASIC program. These parameters are shown in parentheses following the program
offset variable for each statement.

There are some limitations in BASICA that have, unfortunately, placed restrictions on
the called routines.

* The order, number, and type of variables passed to the routines must be exactly as
shown for each routine. This is because BASIC only passes pointers of variables
and does not provide a variable type identifier.

* The BASIC interpreter and compiler (such as Compiled BASIC and QuickBASIC)
have different string variable requirements. -t The default is for the BASIC
interpreter. For the BASIC compiler, you must call the INIT routine to set the
SETTING% bit 8 to be “1” to tell the firmware routines to handle the 3 parameters
in a different way.

* Passed parameters must be variables and cannot be constants.

* BASIC may change its source code if a statement changes the contents of the passed
string. This situation can be avoided by assigning a value to the string argument
before calling the firmware routines. The statement to define a blank string to
receive data is recommended is as:

D$ = SPACE$(255).

CHAPTER 3 PROGRAMMING REFERENCE 13

The programming examples and interpreter routines have been written to work around
these limitations and they should not placed any restrictions on your IEEE-488
applications.

3.3. Using QuickBASIC and BASIC Compiler

Calling the IEEE-488 routines in the firmware when using BASIC compiler or
QuickBASIC is almost the same way as using BASICA except the following two
areas.

1.When using the IEEE-488 routines in BASICA programming, the l; user does not
need to call the INIT routine (initialization) except the default setting is not used.
Uowever, the user need to call the INIT routine before calling any other IEEE488
routines when programming in BASIC compiler or QuickBASIC. When calling the
INIT routine, the bit 8 of the parameter SETTING% must be set to “1”.

2.The syntax to call the IEEE-488 firmware routines when programming in BASICA
is as:

CALL OUTPUT%(ADDR%,D$)

however, in BASIC compiler or QuickBASIC, the syntax is:lt

CALL ABSOLUTE(ADDR%, D$,0UTPUT%)

Note: When using QuickBASIC, the user needs to enter the develop-
ing environment by the command

QB/L

to load the library USERLIB.EXE. Otherwise, the word “ABSOLUTE” cannot be
recognized.

3.4. The Driver Routines

The following twenty one routines can be called by programs written in BASICA,
BASIC Compiler or QuickBASIC to access the IEEE-488 interface. QuickBASIC has
the same syntax as BASIC Compiler.

14 PCL-848AB User's Manual

3.4.1. AHORT

Purpose:

This command aborts all activities on the interface bus bys

Offset :

AHORT%=9

Syntax :

CALL AHORT% ---BASIC

CALL AHSOLUTE(AHORT%) ---BASIC Compiler

Parameter:

None.

Bus Activity :

IFC is pulsed for 100 microseconds.

REN is set true

ATN is set false.

Remark :

This command can be called only in system controller mode An error will occur if this
command is called in the nonsystem control mode.

CHAPTER 3 PROGRAMMING REFERENCE 15

3.4.2. DEVCLR (Device Clear) Purpose :

This command sends a Selective Device Clear (SDC) command to a specified device or
sends a Device Clear (DCL) to the interface bus.

Offset :

DEVCLR%=15

Syntax :

CALL DEVCLR%(ADDR%) ---BASIC

CALL ABSOLUTE(ADDR%,DEVCLR%) ---BASIC Compiler

Parameter :

ADDR% - The address of the device to be cleared. If 0 <= ADDR% <= 30, it
executes a Selective Device to the i device specified, otherwise, it
executes a Device Clear to the bus.

Bus Activity :

- If 0 <= addr <= 30

ATN is set true.
UNL is sent.
LAD is sent.
MTA is sent.
SDC is sent.

- If addr < 0 or addr > 30

ATN is set true.
DCL is sent.

16 PCL-848AB User's Manual

3.4.3. DEVICE

Purpose:

This command installs an IEEE-488 device driver in place of s the LPT1:, LPT2:,
LPT3:, COM1: and COM2: driver. The IEEE-488 devices then can be accessed using
the system commandst in MS-DOS.

Offset :

DEVICE%=57

Syntax:

CALL DEVCLR%(ADDR%,PORT%)—BASIC

CALL ABSOLUTE(ADDR%,PORT%,DEVCLR%) —BASIC Compiler~

Parameter:

ADDR% - The address of the device which is assigned to

LPTn: or COMn:. If ADDR% < 0 or ADDR% > 30, the replace-
ment of LPTn: or COMn: is disabled.

PORT% - The port number which is to be replaced with the
IEEE-488 device.

1 : assigned to LPT1:
2 : assigned to LPT2:
3 : assigned to LPT3:
4 : assigned to COM1:
5 : assigned to COM2:

Bus Activity:

None.

CHAPTER 3 PROGRAMMING REFERENCE 17

3.4.4. ENTER Purpose :

This command enters a string from a device or from the interface. Reading iB
terminated upon receiving the terminator specified by the EOL command or the
maximum length of data bytes is reached.

Offset :

ENTER%=6

Syntax :

CALL ENTER%(ADDR%,DS) ---BASIC

CALL ABSOLUTE(ADDR%,D$,ENTER%) ---BASIC Compiler

Parameter :

ADDR% - Device address. If 0 < ADDR% <= 30, then it enters the string from
the specified device, ~ otherwise, it enters the string from the interface.

D$ - The string from the specified device or from the interface.

Bus Activity :

- If 0 <= addr <= 30

ATN is set true.
REN is set true.
UNL is sent.
TAD is sent.
MLA is set.
ATN is set false.
Data string is entered.

- If addr < 0 or addr > 30

ATN is set false.
Data string is entered.

Remark:
The entered string length can be read by STATUS.

18 PCL-848AB User's Manual

3.4.5. ENTERA

Purpose :

This command enters a long string (can be up to 65535 bytes) from a specified
device or from the interface. Reading is terminated upon receiving the terminator, or
when the specified length is reached, or on timeout. The string is put into the
specified segment in the memory. The starting address of the received string has
offset 0 in that segment.

Offset :

ENTERA%=51

Syntax :

CALL ENTER%(ADDR%,DATASEG%,LENGTH%) ----BASIC

CALL ABSOLUTE(ADDR%,DATASEG%,LENGTH%,ENTERA%)

----EASIC Compiler

Parameter :

ADDR% - The address of the device the input string comes from, If 0 <=
ADDR% <= 30, the specified device is the talker, otherwise,
the talker is the previously defined one.

DATASEG% - The memory segment where the string is to be put. The starting
address offset is 0.

LENGTH% - The input string length. The range is from 0 to 65535.

Bus Activity :

- If 0 <= addr <= 30

ATN is set true. UNL is sent. TAD is sent. MLA is set. ATN is set false.
Data string is entered.

- If addr < 0 or addr > 30

ATN is set false. Data string is entered.

CHAPTER 3 PROGRAMMING REFERENCE 19

Example:

10 DEF SEG=&HD000 ‘ Define location of firmware :

20 ENTERA%=51 : STATUS%=42 ‘ Define routine offset

.

.

40 ADDR%=8 ‘ GP-IB Device 8 as data source

50 DATASEG%=&u3000‘ Put data to this segment

60 LENGTH%=&RFFFF ‘ Set buffer length 65535 byte

70 CALL ENTERA%(ADDR%,DATASEG%,LENGTu%) ‘Enter data

80 CONDITION%=9 : COUNT%=0

90 CALL STATUS%(CONDITION%,COUNT%) ‘Read data length

100 DEF SEG=&u3000 ‘ Define location of data

110 IF COUNT%<0 THEN CNT=655361+COUNT% ELSE CNT=COUNT%

120 FOR I= 1 TO CNT

130 PRINT CER$(PEEK(I-1)); ‘Print the data string

140 NEXT I

150 DEF SEG=&HD000

.

.

20 PCL-848AB User's Manual

3.4.6. EOL

Purpose :

This command sets the terminators of input and output strings for the specified
device. The terminators of all devices are set to default values if this command is not
called.

Offset :
EOL%=12

Syntax :
CALL EOL%(ADDR%,OUTEOL%,OUTEOL$,INEOL%,INEOLBYTE%)

----BASIC
CALL ABSOLUTE(ADDR%,OUTEOL%,OUTEOLS,INEOL%,INEOLBYTE%,EOL%)

----BASIC Compiler

Parameter :

ADDR% - The address of device to be assigned the terminator.
The range is from 0 to 30.

OUTEOL% - Terminator type appended to output string. The default value is 0.

0 Terminated with both OUTEOL$ and EOI.
1 Terminated with EOI only. OUTEOL$ not used. i;
2 Terminated with OUTEOL$ only. EOI is disabled.

OUTEOL$ - End-Of-Line string which is to be sent following output strings.
The string can be 8 characters long at maximum. The default string
is 13, 10 (CARRIAGE RETURN and LINE FEED).

INEOL% - The condition for which the input string is terminated. The default
value is 0.

0 Terminated when INEOLBYTE$ received or EOI true or input
string full.
1 Terminated when EOI true or input string full.

INEOLBYTE$ - The ASCII code of the character upon which the input string will
be terminated when INEOL% is 0. The default is 10 (LINE
FEED).

Bus Activity :

None.

CHAPTER 3 PROGRAMMING REFERENCE 21

3.4.7. INIT

Purpose :

This aommand initializes the interface card and sets the relative parameters. It can be
neglected if the parameters used are all default values.

Offset :

INIT%=0

Syntax :

CALL INIT%(IOPORT%,MYADDR%,SETTING%) ----BASIC

CALL ABSOLUTE(IOPORT%,NYADDR%,SETTING%,INIT%)
----HASIC Compiler

Parameter :

IOPORT% - I/O port of NEC7210, from hex 008 to hex 2F8 by increment of
hex 010. The value is the I/O base address plus 8. The default
value is hex 2B8 since the base address (determined by SW1) of
this card is set to hex 2B0 at factory.

MYADDR% - IEEE-488 address of the IEEE-488 interface card. The range-is
from 0 to 30. The default value is 21.

SETTING% - An integer (16 bit) to set the DMA LEVEL, IRQ LEVEL and
other parameters. The default value is 0, i.e., 8ASIC interpreter,
system controller, no IRQ and no DMA.

22 PCL-848AB User's Manual

For more information about bit 12,14,15 of setting, please refer to Section 5. AD-
VANCED PROGRANMING TECUNIQUES.

Bus Activity :

This command takes following action when it is called.

1. Initialize the NEC7210 GP-IB controller.
2. Set relative parameters for the NEC7210.
3. Store the I/O base address, IRQ level and DMA level into working RAM.

Examples :

1)Set IEEE-488 interface card to mode : Non-system controller, No IRQ, No DMA.
Bus address is 21. I/O port address is hex 2B8 (SW1 is set at hex 2B0).

50 INIT% = 0
60 MYADDR% = 21
70 IOPORT% = &u2B8
80 SETTING% = &H008F
90 CALL INIT%(IOPORT%,MYADDR%,SETTING%)
.
.

2) Set IEEE-488 interface card to mode : System controller, IRQ level 7 and DMA
level 1. IEEE-488 address is 0. I/O port address is hex 3C8 (SW1 is set at hex 3C0).
.
.

50 INIT% = 0
60 MYADDR% = 0
70 IOPORT% = &H3C8
80 SETTING% = &H001D' Bit 0, 2, 3, 4 are all 1
90 CALL INIT%(IOPORT%,MYADDR%,SETTING%)
.
.

3) Set IEEE-488 interface card to BASIC Compiler mode, System controller, No IRQ,
DMA level 2. Bus address is 21. I/O port address is hex 2B8.
.
.
50 INIT% = 0
60 MYADDR% = 21
70 IOPORT% = &H2B8
80 SETTING% = &H0102
90 CALL INIT%(IOPORT%,MYADDR%,SETTING%)
.
.

CHAPTER 3 PROGRAMMING REFERENCE 23

3.4.8. LLO

Purpose :

This command executes a Local Lockout (LLO) to disable a device’s front panel. It is
received by all devices on the bus, whether or not they are addressed to listen.

Offset :

LLO%=18

Syntax :

CALL LLO% ----BASIC

CALL ABSOLUTE(LLO%) ----BASIC Compiler

Parameter :

None.

Bus Activity :

ATN is set true. LLO is sent.

24 PCL-848AB User's Manual

3.4.9. LOCAL

Purpose :

This command executes a Go To Local (GTL) or clears the REN line to enable a
device’s front panel controls.

Offset :

LOCAL%=21

Syntax :

CALL LOCAL%(ADDR%) ----BASIC

CALL ABSOLUTE(ADDR%,LOCAL%) ----BASIC Compiler

Parameter :

ADDR% - The address of the device to be set local. If 0 <= addr <=30, then it
executes a Go To Local (GTL) command to the specified device.
Otherwise, it sets the REN line false (High).

Bus Activity :

- If 0 <= addr <= 30
ATN is set true.
UNL is sent.
LAD is sent.
MTA is sent.
GTL is sent.

- If addr < 0 or addr > 30
REN is set false.
ATN is set false.

CHAPTER 3 PROGRAMMING REFERENCE 25

3.4.10. OUTPUT Purpose :

This command outputs a string to the specified device or to the interface bus. After
the string is sent, the terminator 3 specified by the EOL command is sent.

Offset :

OUTPUT%=3

Syntax :

CALL OUTPUTi(ADDR%,D$) ----BASIC

CALL ABSOLUTB(ADDR%D$,OUTPUT%) ----BASIC Compiler 3

Parameter :

ADDRt - Device address. If 0 <= addr <= 30, then it outputs the string to
the specified device. Otherwise, it outputs the string to the
interface bus.

D$ - The data string variable to be output.

Bus Activity :

- If 0 <= addr <= 30
ATN is set true.
REN is set true.
UNL is sent.
LAD is sent.
MTA is sent.
ATN is set false.
Data string is sent.
EOL string and/or EOI is sent.

- If addr < 0 or addr > 30
ATN is set false.
Data string is sent.
EOL string and/or EOI is sent.

26 PCL-848AB User's Manual

3.4.11. OUTPUTA

Purpose :

This command outputs a long string (can be up to 65535 bytes) to a specified device
or to the interface. The output string iB terminated when the length of the output
string is approached, or when the bus handshake times out. The output string is in the
memory area with the specified segment. The start address of the output string is at
offset 0 in that segment.

Offset :

OUTPUTA%=54

Syntax :

CALL OUTPUTA%(ADDR%,DATASEG%,LENGTH%) ----BASIC
CALL ABSOLUTE(ADDR%,DATASEG%,LENGTH%,OUTPUTA%)

----BASIC Compiler

Parameter :

ADDR% - The address of the device which the output string is sent to. If
0<=addr<=30, then the specified device is the listener. Other-
wise, the listener(s) is(are) the previously defined one(s).

DATASEG% - The memory segment where the output string is put.
The start address offset is 0.

LENGTu% - The output string length. The range is from 0 to 65535.

Bus Activity :

- If 0 <= addr <= 30
ATN is set true.
UNL is sent.
LAD is sent.
MTA is set.
ATN is set false.
Long string is sent.

- If addr < 0 or addr > 30
ATN is set false.
Long string sent.

CHAPTER 3 PROGRAMMING REFERENCE 27

Example:

10 ‘ This program loads a data file from disk into RAM

20 ‘ and then outputs this data to the IEEE-488 device 8

.

.

50 ADDR%=8

60 OPEN “DATA.001” FOR INPUT AS 12 ‘line 150 to 230

70 DEF SEG=&H4000 ‘read a data strinq

80 COUNT=0

90 WHILE NOT EOF(2)

100 A$=INPUT$(1,X2) ‘read one byte

110 POKE COUNT,ASC(A$) 3

120 COUNT=COUNT+1

130 WEND

140 CLOSE #2

150 DEF SEG=&HD000

160 OUTPUTA%=54

170 DATASEG%=&H4000

180 IF COUNT < 327681 THEN LENGTH%=COUNT ELSE
LENGTH%=COUNT -655361

190 CALL OUTPUTA%(ADDR%,DATASEG%,LENGTH%)

200 STOP

.

.

28 PCL-848AB User's Manual

3.4.12. PPOLL

Purpose :

This command conducts a parallel poll of the interface bus. It returns the value (0-
255) of an eight-bit byte represent- , ing the response of those devices of the interface
which have been configured to respond to a parallel poll (see the PPOLLC command).

Offset :

PPOLL%=24

Syntax :

CALL PPOLL%(RESPONSE%) ----BASIC

CALL ABSOLUTE(RESPONSE%,PPOLL%) ----BASIC Compiler

Parameter :

RESPONSE% - An integer equals to the result of parallel polling. Value 0-255
of an eight bit byte represents the parallel poll response of the
devices of the interface bus.

Bus Activity :

ATN and EOI are set true for 25 microseconds.
The parallel poll byte is read.
EOI is set false.
ATN is set false.

CHAPTER 3 PROGRAMMING REFERENCE 29

3.4.13. PPOLLC

Purpose:

This command performs a Parallel Poll Configure. In preparation for a parallel poll
command, it enables you to tell a device how to respond to the parallel poll, and on
which data line to respond. In general, it enables you to contfigure a parallel poll
response byte to reflect the response ri of a desired arrangement of devices. You can
define the ~ bits to reflect the responses of particular instruments or the logical-OR of
several instrument responses.

Offset:

PPOLLC%=27

Syntax:

CALL PPOLLC&(ADDR%,CONFIG%) ----BASIC
CALL ABSOLUTE(ADDR%,CONFIG%,PPOLLC%) ----BASIC Compiler

Parameter:

ADDR% - The address of the device to be configured. If 0 i <= addr <= 30,
then the specified device is configured. Otherwise, the previous-
ly defined s listener(s) are configured.

CONFIG% - An integer sent to configure the specified device indicating how
and which data line to respond.

Bit 3 2 1 0

Indicates line 0-7 (DI01-8)

0 : Responds with 0

1 : Responds with 1

Bit 4-15 : Not used.

30 PCL-848AB User's Manual

Bus Activity:

- If O <= addr <= 30

ATN is set true.
UNL is sent.
LAD is sent.
MTA is sent.
PPC is sent.
PPE is sent.

- If ADDR% < 0 or ADDR% >30

ATN is set true.
PPC is sent.
PPE is sent.

CHAPTER 3 PROGRAMMING REFERENCE 31

3.4.14. PPOLLU

Purpose:

This command executes a Parallel Poll Unconfigure. It directs a device to not
respond to a parallel poll. It can e be addressed to the interface bus or to a specific
device.

Offset:

PPOLLU%=30

Syntax:

CALL PPOLLU%(ADDR%) ----BASIC

CALL ABSOLUTE(ADDR%,PPOLLU%) ----BASIC Compiler

Parameter:

ADDR’ - The address of the device to be unconfigured. If s 0 <= addr <= 30, the
specified device is uncon figured. Otherwise, all the devices are unconfig-
ured.

Bus Activity:

- If 0 <= addr <= 30

ATN is set true.
UNL is sent.
LAD is sent.
MTA is sent.
PPC is sent.
PPD is sent.

- If addr < 0 or addr > 30
ATN is set true.
PPU is sent.

32 PCL-848AB User's Manual

3.4.15. REHOTE

Purpose:

This command places a device in Remote Mode. It can be addressed to a specific
device or to the interface, which just sets the REN line true.

Offset:

REMOTE%=33

Syntax :

CALL REMOTE&(ADDR%) ----BASIC

CALL ABSOLUTE(ADDR%,REMOTE%) ----BASIC Compiler

Parameter :

ADDR% - The address of the device to be set to remote. If 0<=addr<=30,
the specified device is set to remote. Otherwise, just the REN
line is set true.

Bus Activity :

- If 0 <= addr <= 30

REN is set true.
ATN is set true.
UNL is sent.
LAD is sent.
MTA is sent.

- If addr < 0 or addr > 30

REN is set true.

CHAPTER 3 PROGRAMMING REFERENCE 33

3.4.16. SEND

Purpose:

This command sends user specified IEEE-488 Interface commands to the interface.
Eor example, to send an output string to several instruments simultaneously, you can
establish multiple listener status with the SEND command, then issue the OUTPUT
command with address <0 or >30.

Offset:

SEND%=36

Syntax:

CALL SENDi(CMDS) ----BASIC

CALL ABSOLUTE(CMDS,SENDi) ----BASIC Compiler

Parameter:

CMD$ - Pointer of a string of standard mnemonic IEEE-488 interface
commands. The following can be used:

LISTEN TALK DATA UNL UNT GET DCL GTL P PPD
PPE PPU i REN SDC SPD SPE TCT MLA MTA IFC CMD
LLO SEC EOI

Example:

CMD$=’’UNL UNT MTA LISTEN 9 10 SEC 3 DATA
‘ABCD’EOI”

See Section 5.4. for more information.

34 PCL-848AB User's Manual

Bus Activity :

- The following commands set ATN true then send out the corresponding character.

Mnemonic UNL UNT GET DCL GTL P PPD PPU
ASCII ?
(Hex) (3F) (5F) (08) (14) (01) (05) (70) (15)

Mnemonic SDC SPD SPE TCT *MLA *MTA LLO
ASCII 5 U

(hex) (04) (19) (18) (09) (35) (55) (11)

* My address = 21

The following commands take some actions other than sending characters.

LISTEN Take following values as listener address.

TALK Take following values as talker address.

DATA Set ATN false.

EOI Set EOI true at last data byte.

PPE Take following values as Parallel Poll Config.

IFC Pulse IFC true for 100 microseconds.

CMD Set ATN true.

SEC Take following values as secondary commands.

CHAPTER 3 PROGRAMMING REFERENCE 35

3.4.17. SPOLL

Purpose :

This command conducts a serial poll of the interface bus. It returns the value (0-
255) of an eight-bit byte representing the device’s status.

Offset :

SPOLL%=39

Syntax :

CALL SPOLL%(ADDR%,RESPONSE%) ----BASIC

CALL ABSOLVTE(ADDR%,RESPONSE%,SPOLL%) ----BASIC Compiler

Parameter :

ADDR% - The address of the device to be serial polled. Must be within 0
and 30.

RESPONSE% - An integer with the value 0-255 of an eight bit byte representing
the status of the device specified.

Bus Activity :

ATN is set true.
UNL is sent.
TAD is sent.
MLA is set.
SPE is sent.
ATN is set false.
Data byte is read.
ATN is set true.
SPD is sent.
UNT is sent.

36 PCL-848AB User's Manual

3.4.18. STATUS Purpose :

Purpose :
This command reads the status from the interface and returns this value to the
calling statement.

Offset :

STATUS%=42

Syntax :
CALL STATUS%(CONDITION%,5%) ----BASIC
CALL ABSOLUTE(CONDITION%,5%,5TATUS%) ----BASIC Compiler

Parameter :
CONDITION% - This number specifies which status is read.

0 - 7 : NEC7210 read register 0 - 7.
8 : Error Number of last called command.
9 : Count of string bytes that are output or entered.
10 : Timeout interval in milliseconds.
11 : I/O port address of NEC7210.
12 : DMA & IRQ setting.

S% - Variable which represents interface status 3 response.

Bus Activity :
None.

Remark :
The error number returned with condition 8 represents different types of errors.

Error Number Error Type

0 No error

l Handshake timeout

2 Interface error

3 Call ABORT when non-system controller

4 Invalid passed parameter(s)

CHAPTER 3 PROGRAMMING REFERENCE 37

3.4.19. TIMEOUT Purpose :

Purpose :

This command sets the timeout period. When the bus handshake is stuck, the called
I/O functions will terminate at the time specified and the timeout flag will be set.

Offset :
TIMEOUT%=45

Syntax :

CALL TIMEOUT%(T%) ----BASIC
CALL ABSOLUTE(T%,TIMEOUT%) ----BASIC Compiler

Parameter:
T% - T% = 0 Disable the timeout command.

T% = 1 to 32767 Timeout period is T% units.
T% = -1 to -32767Timeout period is (65536+T%) units.

Bus Activity :
None.

Remark :

1. The unit of the timeout period depends on the execution speed of the CPU. For PC/
XT of 4.77 MHz clock rate, the unit is one millisecond. For PC/AT and higher clock
rate CPU, the unit is less.

2. The timeout period is set to 10000 units each time the INIT command is called.

38 PCL-848AB User's Manual

3.4.20. TRIGGER Purpose :

Purpose :

This command sends a Group Execute Trigger (GET) to a device or to the interface
bus.

Offset :
TRIG%=48

Syntax:

CALL TRIGi(ADDRi) ----BASIC
CALL AHSOLUTE(ADDR’,TRIG%) ----BASIC Compiler

Parameter :

ADDRi - The address of the specified device to be triggered. If 0 <= addr
<= 30, the specified device is triggered. Otherwise, all the
listeners of the bus are triggered.

Hus Activity :

- If 0 <= addr <= 30

ATN is set true.

UNL is sent.

LAD is sent.

MTA is sent.

GET is sent.

- If addr < 0 or addr > 30

ATN is set true.

GET is sent.

CHAPTER 3 PROGRAMMING REFERENCE 39

3.4.21. ERRPTR

Purpose :
This command assigned variables for error number and count of string bytes.

Offset:
ERRPTR%=60

Syntax :

CALL ERRPTR%(IOERR%,IOCOUNT%) ----BASIC
CALL ABSOLUTE(IOERR%,IOCOUNT%,ERRPTR%)----BASIC Compiler

Parameter :

IOERR% - Variable which represents the error number of last called
command.

IOCOUNT% - Variable which represents the count of string bytes that are
outputed or entered.

Bus Activity :
None.

Remark:
This command must be executed before calling any other t~command except the
“INIT” command.

ERROR NUMBER ERROR TYPE

0 No error
1 Handshake timeout
2 Interface error
3 Call ABORT when non-system controller
4 Invalid passed parameter(s)

See the STATUS command (condition 8) for other information.

40 PCL-848AB User's Manual

Example :

10 DEF SEG=&HD000
20 INIT%=0:OUTPUT%=3:ENTER%=6:ERRPTR%=60
30 ADDR%=23
40 CALL ERRPTR%(IOERR%,IOCOUNT%)
50 TMPS=”FlRAT3NS”
60 CALL OUTPUT%(ADDR%,TMP$):GOSUB 100
70 ANs$=sPACE$(40)
80 CALL ENTER%(ADDR%,ANS$):GOSUH 100
85 PRINT ANS$
90 STOP
100 ‘Error number and string counts check routine
110 PRINT “TBE COUNT OF STRING BYTES = “;IOCOUNT%
120 IF IOERR%=0 TEEN PRINT “NO ERROR”
130 IF IOERR%=1 TREN PRINT “3ANDSBAKE TIMEOUT”
160 RETURN
170 END

CHAPTER 4 PROGRAMMING TECBNIQUES 41

4. PROGRAMMING TECBNIQUES

4.1. Interactive Data Transfer

10 'FILE NAME : EXAMPLE.1
20 'Program Example : INTERACTIVE DATA TRANSFER
40 'Purpose : This program outputs data strings entered by
50 users and enters data from the IEEE-488 bus.
70 '
80 'Initialization
90'
100 LIN.Y=1 : KEY OFF : CLS
110 DEF SEG=&BD000
120 ABORT%=9 : OUTPUTi=3 : ENTER%=6 : STATUS%=42
130 CALL ABORT’
140 '
150 'Command entry point
160
170 KEY(1) ON : KEY(2) ON : KEY(3) ON : KEY(4) ON : KEY(5) OFF
180 KEY(6) OFF: KEY(7) OFF: KEY(8) OFF: KEY(9) OFF: KEY(10) OFF
190 KEY 1 CLS .KEY 2 0UTPUT ¥KEY
200 KEY 5 .KEY 6.KEY 73 ENTER KEY 4 EXIT
210 KEY 9,” “:KEY 10,”
220 ON KEY(1) GOSUB 390
230 ON REY(2) GOSUB 440
240 ON KEY(3) GOSUB 560
250 ON KEY(4) GOSUB 810
260 '
270 GOSUB 330
280 KEY ON
290 GOTO 290 ‘Loop here waiting function key
310 'Display message
320 '
330 COLOR 15,7:LOCATE 22,1,0:PRINT “ “;SPACE$(79):LOCATE 22,1
340 PRINT “Select function key l”:COLOR 7,0:LOCATE 1,1
350 RETURN
360 '
370 'Clear Screen
380 '
390 CLS:GOSUB 330
400 RETURN
410 '

42 PCL-848AB User's Manual

420 'OUTPUT UTILITY
430 '
440 TMP$=SPACE$(80)
450 IF 22-LIN.Y<6 TREN CLS:LIN Y=1
460 LOCATE 22,1,0:PRINT “ “;SPACE$(79):LOCATE LIN.Y,1
430 INPUT “To which address 7 “,ADDR
490 LINE INPUT ‘’OUTPUT string 7 “,TNP$
500 E.FG%=0 : CALL OUTPUT%(ADDR%,TMP$)
510 GOSUB 710
520 IF S%=0 THEN PRINT “Data transmitted 1”
530 PRINT : PRINT : LIN.Y=CSRLIN : GOSUB 330
540 RETURN
550 '
560 '
570 'ENTER UTILITY
580 '
590 PRINT
600 D$=SPACE$(80)
610 IF 22-LIN.Y<6 TUEN CLS : LIN.Y=1
620 LOCATE 22,1,0:PRINT “ “;SPC(79):LOCATE LIN.Y,1
630 INPUT l’From which address 7 “,ADDR%3
640 CALL ENTER%(ADDR%,D$)
650 GOSUB 710 ‘Error check
660 IF S%c>0 THEN 690 ‘Error happened
670 PRINT “ENTERED STRING :”
680 PRINT D$
690 PRINT : LIN.Y=CSRLIN : GOSUB 430
700 RETURN
710 '
720 '
730 'TIMEOUT CUECK ROUTINE
740 '
750 CONDITION%=8
760 CALL STATUS%(CONDITION%,S%)
770 IF S%=1 THEN PRINT “TIMEOUT 1”
780 IF S%<>0 AND S%<>1 THEN PRINT “INTERFACE ERROR l”
790 RETURN
800 '
810 END
820 '
830 'TUEN END OF THIS PROGRAM

CHAPTER 4 PROGRAMMING TECBNIQUES 43

4.2. Set IEEE-488 Printer

10 'FILE NAME : EXAMPLE.2
20 ' Program Example : SET IEEE-488 PRINTER
30 '
40 'Purpose : This program converts an IEEE-488 printer to a
50 'PC system printer
70 '
80 'Initialization
90
100 CLS
110 DEF SEG=&HD000
120 DEVICE%=57
130
140
150 Enter the IEEE-488 printer setting
170 INPUT “Enter the IEEE-488 printer address ? “,ADDR%
180 IF ADDR&<0 OR ADDR~~>30 THEN PRINT “Bad entry.” ~ GOTO 170
190 INPUT “Enter the printer port ? (1/LPT1 2/LPT2;) “,N%\ -
200 IF N%<>1 OR N%<>2 TuEN PRINT “Bad entry.’ . GOTO 19
220 '
230 'Setting the IEEE-488 printer
250 CALL DEVICE%(ADDR%,N%)
260 PRINT
270 PRINT “IEEE-488 printer is ready to use.”
290 '
300 'Check the IEEE-488 printer function
320 PRINT
330 INPUT “Send string to printer ? (Y/N) “,Y$
340 IF Y$<>”y” AND Y$<>”Y” T HEN END
350 LINE INPUT “Enter the string : “;D$
360 LPRINT D$
370 GOTO 320
380 '
390 END

44 PCL-848AB User's Manual

4.3. Voltage Measurement with a DVM
10 'FILE NAME : EXAMPLE.3
20 'Program Example : VOLTAGE MEASUREMENT WIT)3 A DVM
30 '
40 'Purpose : This program measure 10 voltage readings
50 'and displays them
60 '
70 'Remark : This program is written for the HP3478A DVM. If
80 'another model of voltmeter is used, please check
90 'the operating manual and make necessary
100 'modification to this program.
110 '
120 'Initialization
130 '
140 CLS 150 DEF SEG=&HD000
160 ABORT%=9 : ENTER%=6 : OUTPUT%=3 : STATUS%=42 : TRIG-

GER%=48
170 CALL ABORT%
180 '
190 ‘ Set the DVM
200 '
210 ADDR%=23
220 D$=l’FlT3RAN5'’
230 CALL OUTPUT%(ADDR%,DS) ‘ Send instrument setting string
240 GOSUB 430 250 IF ER%<>0 T13EN PRINT “Error when setting DVM.” : END
260 '
270 'Measurement start
280 '
290 FOR I=1 TO 10
300 CALL TRIGGER%(ADDR%) Trigger the DVM.
310 D$=SPACE$(40)
320 CALL ENTER%(ADDR%,D$) Enter DVM reading
330 GOSUB 430 ‘Error check
340 IF ER%<> 0 TuEN PRINT “Error when reading DVM.” : END
350 PRINT I,D$.
360 NEXT I
370
380 END
390 '
400 'Error check routine
410 '
420 CONDITION%=8 : ER%=0
430 CALL STATUS%(CONDITION%,ER%) ‘Read the error num’oer
440 IF ER%<>0 TSEN PRINT “Error “;ER%
450 IF ER%=1 T13EN PRINT “Device timeout 1”
460 RETURN
470 '
480 'End of this program

CHAPTER 4 PROGRAMMING TECBNIQUES 45

4.4. AD500 PMU Programming

10 'FILE NAME : EXAMPLE.4
20 'Program Example : AD500 PMU PROGRAMMING
30 '
40 'Purpose : This program measures 16 channel of voltages and
50 'display them. If the voltage of any channel is
60 'greater than a certain level then it close a
70 'relay to drive an alarm.
80 '
90 'Remark : The AD500 has a 16 channel multiplexer in alot 0
100 'and 16 channel relay actuator in slot 1. The};
110 'voltage measurement is done by an HP3478A DVM.
120 'The AD500 has an address of 9 and HP3478A has an
125 'address of 23.
130 '
140 'Initialization
150 '
160 CLS _
170 DIM V(16)
180 DEF SEG=&HD000
190 ABORT%=9 : ENTER%=6 : OUTPUT%=3: STATUS%=42: TRIGGER%=48
200 TIMEOUT%=45 : EOL%=12 : ADDR3478%=23 : ADDR500%=9
210 V.LIMIT=2 ‘ Voltage limit
220 'Set handshake timeout & init IEEE-488 bus
230 CALL ABORT% : FOR Y=0 TO 300 : NEXT Y ‘Wait for ADSOOA reset
240 T%=5000 : CALL TIMEOUT%(T%) ‘ Set timeout 5 sec.
250 'Init ADSOOA terminator
260 OUTEOL%=2 : OUTEOLS=CHR$(13) : INEOL%=0 : INEOLBYTE%=10
270 CALL EOL%(ADDR500%,OUTEOL%,OUTEOL$,INEOL%,INEOLBYTE%)
280 'Set the DVM and Multiplexer
290 '
300 D$=”FlT3RAN5"
310 CALL OUTPUT%(ADDR3478%,D$) ‘ Send DVM setting string
320 GOSUB 770 ‘ Error check
330 IF ER%<>0 THEN PRINT “Error when setting DVM.” : END
340 '
350 D$=”DW0,16;DW1,0";
360 CALL OUTPUT%(ADDR500%,D$) ‘ Open relays of Multiplexer
370 'and Actuator
380 GOSUB 770 ‘ Error check
390 IF ER%<>0 THEN PRINT “Error when setting AD500.” : END
400 '
410

46 PCL-848AB User's Manual

420 'Measurement start
430 '
440 ALARM%=0
450 FOR I=0 TO 15
460 D$=”DW0,”+STR$(I)
470 '
480 CALL OUTPUT%(ADDR500%,D$) ‘ Close channel I.
490 FOR K-1 TO 10 : NEXT K ‘ Delay for the relay operation.
500
510 CALL TRIGGER%(ADDR3478%) ‘ Trigger the DVM.
520
530 D$=SPACES(40) 540 CALL ENTER%(ADDR3478%,DS) ‘ Enter DVM reading
550 GOSUB 770 ‘ Error check
560 IF ER%0 THEN PRINT “Error when setting DVM.” : END 570 ‘ 580

V(I)=VAL(D$)
590 PRINT I,V(I),
600 IF V(I)>V.LIMIT THEN PRINT “ALARM1”, : ALARM%=1
610 PRINT
620 NEXT I
630 PRINT
640 IF ALARM%=0 THEN 710
650 D$=”DW1,1" :7
660 CALL OUTPUT%(ADDR500%,D$) ‘ Set the alarm
670 PRINT “Set Alarml” : PRINT
680 GOTO 420
690
700
710 D$=”DW1,0"
720 CALL OUTPUT%(ADDR500%,D$) ‘ Reset the alarm
730 PRINT “Reset Alarmi” : PRINT
740 GOTO 420
750 '
760
770 'Error check routine
780
790 CONDITION%=8
800 CALL STATUS%(CONDITION%,ER%) ‘ Read the error number
810 IF ER%0 THEN PRINT “Error” ER%
820 IF ER%=1 THEN PRINT “ Device timeoutt”
830 RETURN 4
840 '
850'
860 ‘ End of this program

CHAPTER 4 PROGRAMMING TECBNIQUES 47

4.5. Multiple Device Triggering

10 'FILE NAME : EXAMPLE.5
20 'Program Example : MULTIPLE DEVICE TRIGGERING
30 '
40 'Purpose : This program triggers 2 voltmeters at the same
50 'time to make the measurement simultaneously.
60 '
70 'Remark : This program is written for the HP3478A DVM. If
80 ' another model of voltmeter is used, please check
90 ' the operating manual and make necessary
100 ' modification to this program.
110 '
120 'Initialization
130 '
140 CLS
150 DEF SEG=&HD000
160 ABORT%=9 : ENTER%=6 : OUTPUT%=3 : SEND%=36 : STATUS%=42
170 TRIGGER%=48
180 ADDR1%=23 : ADDR2%=24
190 CALL ABORT%
200 '
210 '
220 'Set the DVM’s
230 '
240 D$=l’FlT3R2N5'’
250 CALL OUTPUT%(ADDR1%,D$) ‘ Send DVM #1 setting string
260 CALL OUTPUT%(ADDR2%,D$) ‘ Send DVM #2 setting string
270 GOSUB 550 ‘ Error check
280 IF ER%<>0 TuEN PRINT “Error when setting DVM.” : END
290 '
300 '
310 'Measurement start
320 '
330 FOR I=1 TO 10
340 '
350 CMD$=’UNL UNT MTA LISTEN 23 24 GET”
360 CALL SEND%(CMD$)‘ Trigger the DVM’s
370 '
380 D1$=SPACE$(40)
390 CALL ENTER%(ADDR1%,D$) ‘ Enter DVM #1 reading
400 GOSUB 550 ‘ Error check
410 IF ER%<>0 TuEN PRINT “Error when reading DVM #1.” : END

48 PCL-848AB User's Manual

420 '
430 D2$=SPACE$(40)
440 CALL ENTER%(ADDR2%,D$) ‘ Enter DVM #2 reading
450 GOSUB 550 ‘ Error check
460 IF ER%<>0 TEEN PRINT “Error when reading DVM #2.” : END
470 '
480 PRINT I,D1$,D2$
490 '
500 NEXT I
510 '
520 END
530
540 '
550 'Error check routine
560 '
570 CONDITION%=8 530 CA L STATUS%(CONDITION%,ER%) ‘ Read the

error number
590 IF ER%0 TEEN PRINT “Error” ER%
600 IF ER%=1 TEEN PRINT “Device timeoutl”
610 RETURN
620 '
630 'End of thie program 570 CONDITION%=8

CHAPTER 4 PROGRAMMING TECBNIQUES 49

4.6. Interrupt Handling

10 'FILE NAME : EXAMPLE.6
20 'Program Example : INTERRUPT HANDLING
30 '
40 'Purpose : This program measures 100 voltage readings and
50 'displays them. It also goes to service
60 'subroutines when interrupts happen.
70 '
80 'Remark : The interrupt handing is for the Advanced BASIC
90 'Version A3.00 and higher only. For other BASIC
100 'Version, this may ont work because of the
110 'different memory arrangement.
120 'This program is written for the HP3478A DVM. If
130 'other models of voltmeters are used, please
140 'check the operating manual and make necessary ;
150 'modification to this program.
160 In this example, the program only shows when the
170 'interrupt happens. You can add more actions to
180 'the service routine to response to an interrupt.
190 '
200 'Initialization
210 '
220 CLS
230 DEF SEG=&HD000 240 ABORT%=9 : ENTER%=6 : OUTPUT%=3 :

STATUS%=42 : TRIGGER%=48 250 SPOLL%=39 : DEVCLR%=15
260 INIT%=0

270 IOPORT%=&H2B8 : MYADDR%=21 E
280 SETTING%=&HE1C ‘ Enable Bus Error, Timeout & select IRQ7
290 'for SRQ interrupt
300 CALL INIT%(IOPORT%,MYADDR%,SETTING%)
310 '
320
330 'Set the DVM & UNMASK Front Panel SRQ bit
340 '
350 ADDR%=23
360 CALL DEVCLR%(ADDR%)
370 FOR II=1 TO 1000 : NEXT II
380 D$=”KM20FlT3RAN5"
390 CALL OUTPUT%(ADDR%,DS) ‘ Send instrument setting string .
400 '
410 ON ERROR GOTO 580
420 ON KEY(l9) GOSUB 700 : KEY(l9) ON
430 ON KEY(20) GOSUB 770 : KEY(20) ON
440
450

50 PCL-848AB User's Manual

460 'Measurement start
470 '
480 FOR I=1 TO 100
490 CALL TRIGGER%tADDR%) ‘ Trigger the DVM.
500 ANS$=SPACE$(40)
450 '
510 CALL ENTER%(ADDR%,ANS$) ‘ Enter DVM reading
520 PRINT I,ANS$
530 NEXT I
540
550 END
560
570 '
580 'Error check routine
600 IF ERR<128 THEN PRINT “BASIC Error”;ERR ELSE ER%=ERR-128
610 IF ER%<>0 TuEN PRINT “Error” ; ER%
620 IF ER%=1 THEN PRINT “Device timeoutl”
630 IF ER%=2 TuEN PRINT “Interface Errorl
640 IF ER%=3 TBEN PRINT “Abort by Non-system Controllerl”
650 IF ER%=4 THEN PRINT “Invalid parameterel”
660 STOP
670 RETURN
680
690
700 'Timeout service routine
710 '
720 PRINT “Interface Timeoutl”
730
740 RETURN
750 '
760 '
770 SRQ service routine
780 '
790 PRINT “Interface SRQI”
800 RES’=0 : CALL SPOLL’(ADDR%,RES%) .
810 PRINT “BP3478A STATUS BYTES IS”;RES%
820 A=INP(IOPORT%+2) c
830 FOR CC=0 TO 500 : NEXT CC
840 RETURN
850 '
860 'End of this program

CHAPTER 5 ADVANCED PROGRAMM1N TECBNIQUES 51

5. ADVANCED PROGRAMM1N TECBNIQUES

5.1. Direct Memory AcceAs (DMA)

Direct memory acaess (DHA) improves system performance by allow- ~ ing external
devices to directly transfer information to or from 3 the system memory without
operation of the system CPU. Any I/O ~ port can source data for DMA and any
read-write memory location ~¤ can receive data. The IEEE-488 interface data transfer
can be programmed to proceed with or without DMA. When you use DMA, the
IEEE-488 interface card provides a number of unique and powerful features.

These features include :

1) The ability to run application programs and DMA simultaneously. It means the
data transfer between PC and the IEEE-488 bus can be background operated.

2) Selection of two DMA operating modes : single byte transfer mode or block
transfer mode.

3) The ability to run IEEE-488 DMA and disk DMA simultaneously.

4) The ability to continuously transmit or receive data blocks of up to 64K bytes
without processor overhead.

These features can significantly improve system performance in applications where
high speed transfers are required or large blocks of data must be moved.

This section describes how DMA works and how you can use it to your advantage. It
also introduces and explains Bit 15 and 14 of <SETTING%> of the INIT routine
described in Section 3.3.7.

DMA is controlled by the 8237 DMA controller chip on the PC’s system board. It
performs dynamic RAM refresh, and supports data transfer between floppy disks
and hard disks in addition to serving the IEEE-488 interface.

Like all DMA chips, the 8237 DMA chip is designed to perform one basic function.
That function is to transfer data between memory and I/O devices. It performs the
transfer by simultaneously addressing the memory location and I/O device and
providing the appropriate read and write signals.

The 8237 DMA chip has four DMA channels, four operating modes, and four
operating conditions. Each channel has a mode register that determines the four
operation conditions of the DMA channel.

These conditions are:

1) The direction of transfer (input or output).

52 PCL-848AB User's Manual

2) The DMA operating mode (single, demand, block, and cascade).

3) Autoinitialization (enabled or disabled).

4) Address register direction (increment or decrement).

A little additional explanation is required to understand these key operating condi-
tions.

This interface allows you to choose from three of the four possible DMA channels.
Channel 0 is used by the PC’s memory refresh controller, so channels 1, 2, and 3 are
the only ones available to the peripherals. Bit 0 and l of <SETTING%> of INIT
rout+ne make this selection.

The interface supports two of the four possible DMA operating modes:

l) Single-byte-transfer mode
In single-byte-transfer mode, the DMA chip and the system processor share
control of the system bus. This allows both DMA and CPU processing to continue
simultaneously.

2) Hlock-transfer mode
In block-transfer mode, transfers are activated by a request for service and continue
until the number of bytes specified by the programmer are transferred. In block-
transfer mode control of the system bus is returned to the microprocessor only after
all data is transferred.

Demand-transfer mode and Cascade mode are not supported by this interface.

The IEEE-488 interface disables the auto-initialization function and uses only the
address register increment direction on the 8237 chip because of the nature of IEEE-
488 bus data transfer.

Bit 14 of <SETTING%> of the INIT routine determines the DMA operating mode.
Setting the bit to “0” lets the DMA operate in single-byte-transfer mode for low
DMA rate and high CPU throughput. Setting the bit to “1” lets the DMA operate in
blocktransfer mode for high DMA rate and low CPU throughput.

Bit 15 of <SETTING%> of INIT routine determines the sequence of software to
handle a DMA. When bit 15 is set to “0”, the software waits for the completion of
DMA before it goes further. When bit 15 is set to “1”, the software initializes the
DMA and then goes away. It is also called BACXGROUND operation. When data
transfer is timing related with the software, BACKGROUND operation cannot be
used.

CHAPTER 5 ADVANCED PROGRAMM1N TECBNIQUES 53

The DMA operation of this IEEE-488 interface is quite transparent to users. Once
you select the DMA mode by calling INIT routine, all further data transfer proceeds
in this mode. Bowever, when you select block-transfer mode, the DMA channel 0
memory refresh may be held long enough to corrupt RAM memory content. Do not
use block-transfer mode unless you have confidence that the data transfer will be
completed within the time limits of memory refresh.

When using background operation, the CPU does not care about the data transfer. The
data string can be terminated by byte count only. The data format problem then must
be handled by users. It is safe to use DMA in single-byte-transfer and non-back-
ground operation mode (the default condition). The other modes can be used only
when you have solid understanding of the PC, 8237 DMA chip and your IEEE-488
devices. We do not recommend using these modes.

54 PCL-848AB User's Manual

5.2. Transfer Speed

The data transfer speed is determined by several factors:

1) The instruction execution speed of the computers. (4.77 MBz PC/XT to 16 MHz
PC/AT to ?)

2) The software overhead.

3) The interface chip operating speed.

4) The clock rate of the DMA chip. (3 to 8 MBz)

5) DMA operating mode.

6) The operating speed of other processors that may be occupying the data bus. (e.g.
8087 coprocessor)

7) The speed of handshake of the peripheral devices.

8) The IEEE-488 cable length and capacitance.

Factors l), 4), and 6) are the nature of the PC. Factors 7) and 8) are determined by
your choice of devices and cables. For factor 5), you can choose block-transfer mode
DMA to get maximum speed with the risk that the PC may be hung. For factor 2), the
interface driver routine is written with a lot of effort to maximize execution speed by
handling the overhead effectively. For factor 3), the NEC7210 was chosen because it is
an interface chip that can operate handshaking with 2 speeds. The user can choose an
appropriate speed according to the actual situation by setting bit 12 of <SETTING%>
when calling INIT routine. This setting will change the handshake timing T1, T6, T7
and T9.

Bit 12 Speed : O Slow

1 Fast

CHAPTER 5 ADVANCED PROGRAMM1N TECBNIQUES 55

5.3. Interrupt

The interface has the capability to interrupt the PC’s processor when certain event
happen. Dowever, most of the version of BASIC language in MS-DOS operating
system only handles the interrupts from keyboard, light pen, communication port,
game port and BASIC error. To use interrupt capability in BASIC, the software can
replace Function Key 19 and 20 interrupts and can add some ERROR’s to inform
BASIC that there is an interrupt from the IEEE488 interface. When these interrupts
are enabled, Function Keys 19 and 20 cannot be used in their normal mode or the
program will 34 be confused.

EVENTS INTERRUPT

ERROR Error. This interface detects an error. The error number is ERR
128. Check 3-3-18 STATUS routine for the error type.

Fl9 Timeout. The IEEE-488 handshake is hung.

F20 SRQ. The IEEE-488 SRQ line is pulled low active by some
device.

The default condition disables all these interrupts. To enable these interrupts, you
must set bits 9,10 and 11 of SETTING’ when calling the INIT routine.

Bit Set O Set 1 IEEE-488 Interrupt Function Key

9 disable enable SRQ F20
10 disable enable Timeout Fl9
11 disable enable Error Error

The BASIC syntax to claim interrupt traps are

ON KEY (20) GOSUB 100 'Handle SRQ
ON KEY (19) GOSUB 200 'Handle Timeout
ON ERROR GOSUB 300 'Handle Error

The interrupt handling of the IEEE-488 interface software is written for IBM
BASICA Version A3.0 & A3.3 only. Since other BASIC versions may have different
traps for the Function Keys and different address of error number, the IEEE-488
interface inter- 44 rupt handling discussed above may not work.

56 PCL-848AB User's Manual

5.4. Hore about the SEND Command

The SEND routine allows the user to control the IEEE-488 interface directly.
Therefore, some unusual functions of the IEEE-488 function can be done by calling
SBND.

An example is PASSING CONTROL to another device. This can be done by
executing the following statements. This example passes control to device 22.

SEND%=36
CND$=”UNL UNT TALK 22 TCT”
CALL SEND%(CMD$)

Some instruments use secondary addressing technique. To write a data string to
secondary address 03 with primary address 23, the program is as follows:

SEND%=36 : OUTPUT%=3
ADDR%=-1 ‘ OUTPUT to pre-defined listeners
D$=”ABCD”
CND$=”UNL UNT MTA LISTEN 23 SEC 03"
CALL SEND%(CMD$)
CALL OUTPUT%(ADDR%,D$)

If your computer intermittently fails to execute this code, you are having a timing
problem. To avoid this, put the data from D$ in CMD$ after the DATA statement.

CMD$=”UNL UNT MTA LISTEN 23 SEC 03 DATA ‘ABCD’”

The SEND command allows you to program all the BUS activities. The IEEE-488
interface does not have special functions to handle PASS CONTROL and secondary
addressing. They are done by calling SEND.

CHAPTER 6 DIGITAL OUTPUT 57

6. DIGITAL OUTPUT

The PCL-848A/B provides 16 digital output channels. These i digital output channels
use the I/O port registers at address BASE+0 and BASE+1. The register’s data format
is listed below.

BASE + O D7 D6 DS D4 D3 D2 D1 DO
(write port)

D/O low byte D07 D06 D05 D04 D03 D02 DO1 D00

BASE + 1 D7 D6 DS D4 D3 D2 D1 DO
(write port)

D/O high byte D015D014 D013 D012 DOll D010 DO9 D08

It is fairly straight forward to use your PCL-848A/B digital ~ output functions. Some
areas requires your attentions are the . pin assignment.

Connector 2 (CN2) - Digital Output

The programming is quite easy and it needs only the BASIC statement ‘OUT’. For
example, to set all the output channels high:

IOPORT%=&U2B0

OUT IOPORT%, &hFF

OUT IOPORT%+1, &hFF

.

.

58 PCL-848AB User's Manual

7. TBEORY OP OPERATION

7.1. Introduction

This section describes the operation theory of this IEEE-488 t interface card. A
thorough understanding of the theory will increase its usefulness and help avoid future
problems.

7.2. Block Diagram Description

Figure 7.1. is the block diagram of this interface card. The i interface transfers data in a
bi-directional fashion between the PC-Bus and the IEEE-488 instrument bus. The
IEEE-488 bus driver is stored in the on-board ROM. When the application program
calls the bus driver, the driver routines generates the necessary bus command sequence
and then transparently passes the data ~ string to or from the bus device.

All of the major elements of this card are interconnected by the data bus of the PC
bus.

When an IEEE-488 bus driver routine is called, the CPU starts the t routine stored in
the ROM. The driver routine controls the IEEE-488 INTERFACE CONTROLLER to
execute the necessary command E sequence.

The on-board RAM is for the storage of the interface parameters, such as the IEEE-
488 address of the controller. The IEEE-488 INTERFACE CONTROLLER is an IC
chip which provides an interface ; between a microprocessor system and the IEEE-
488 interface bus. This IC is controlled and configured through 8-bit I/O mapped
registers and enables all aspects of the IEEE-488 standard to be implemented,
including talker, listener and controller functions.

When the computer executes a data output from the PC to a bus device, the driver
routine writes the data byte to the IEEE-488 interface controller chip and the chip will
handshake the byte out to the bus via the IEEE-488 bus driver/receiver. When entering
data from a bus device, the driver routine sets the IEEE-488 interface controller chip
to accept data and waits for . the handshake to be completed. The data byte is
received via the bus driver/receiver and then is put into the system memory.

CHAPTER 7 TBEORY OP OPERATION 59

Fig. 7-1`PCL-848A/B Block Diagram

60 PCL-848AB User's Manual

8. TROUBLESHOOTING

8.1. Introduction

This section provides information on maintaining, troubleshooting and repairing the
IEEE-488 interface card.

8.2. Periodia Maintenance

The IEEE-488 interface card has no internal adjustment and does not require periodic
calibration. Bowever, the following actions are recommended for preventive mainte-
nance on a once-a-year basis (or more often, in high humidity environments).

The IEEE-488 bus connector (CN1) and the golden fingers for the PC I/O slot should
be cleaned to prevent wax and dirt build-up. Spray the contacts lightly with a good
contact cleaner, such as trichflorethlyene and use a cotton swab to rub off the dirt and
excess cleaner.

8.3. Troubleshooting Procedure

The majority of problems are due to poor cabling, contacts or incorrect device
programming.

The remedy for these two problems is to keep the connector and golden fingers clean
and tight and also to read each device’s manual to gain an understanding of its unique
initialization and setup requirements. For other problems, the troubleshooting guide
lists the symptom, probable cause and suggested corrective action.

CHAPTER 8 TROUBLESHOOTING 61

SYmDtom Possible Fault Check

Computer hangs up Bad connections bet- Clean wax on golden
when calling driver ween golden fingers fingers
routine and PC slot

On-board firmware Change the switch
address switch setup setup or the softis
not the same as ware
software setup

The firmware address Change the firmware
or I/O address set- or I/O address settings
conflict with tings
other add-on cards

Instrument does not Wrong instrument Instrument address

response address setting

Bad bus connections Check bus data with
bus analyzer

Wrong instrument Verify with instru-
programming sequence ment manual .

Instrument hangs up Instrument output Send instrument a

when sending data control not set OK Selective Device

Clear

Instrument output Use EOL procedure
terminates on wrong to change
characters terminator

Change instrument
terminator if
possible

62 PCL-848AB User's Manual

8.4. Part List

Item No. Oty Description Mfr

C1-C6, 20 0.1 microfarad capacitors
C8-C21

C7,C22, 3 10 microfarad capacitors
C23

C24 1 470 picofarad capacitor

R1 1 0 ohm resistor

R2 1 51 ohm resistor

RP1,RP3 2 4.7 Rohm resistor array (9 pin)

RP2 1 4.7 Kohm resistor array (5 pin)

OSC1 1 8 Muz OSC

U1,U5 2 74LS273

U2 1 74LS08

U3 1 74LS126

U4 1 74LS04

U6 1 74LS164

U7 1 74LS138

U8,U12, 4 PEEL 18CV8PC-25 AMI
U15,U17

U9 1 75160A TI

U10 1 75162B TI

U11 1 16K SRAM, 150ns NEC4016C-3
or Equ.

U13 1 GP-IB Interface Controller NEC
NEC7210C

U14 1 64K EPROM 150ns, NEC2764 or
Equ.

U16,U18 2 74LS244

CHAPTER 8 TROUBLESHOOTING 63

Item No. Oty Description Mfr

U19 1 74LS245

SW1,SW2 2 DIP switches (16 pins)

SW3 1 Slide switch

JP1,JP2 2 3 by 2 pin headers

JP3 1 6 by 2 pin header

CN1 1 24 pin ribbon connector (IEEE-488) for PCL-848A or 25
pin D type connector (IEC-625) for PCL-848B

CN2 1 20 pin header with socket

64 PCL-848AB User's Manual

9. BUS TUTORIAL

9.1. General BUB DeBCriPtiOn

The IEEE-488 bus is easy to use and allows great flexibility in data communications
between independent devices. These features have made it one of the world’s most
popular methods for connecting multiple devices to one interface.

The IEEE-488 bus’s popularity comes from its ability to act as an interface between
the computer and the computer’s peripherals. Every interface should handle the
hardware book keeping and timing while maintaining four areas of compatibility
between the computer and its peripherals. These areas include:

Electrical - to insure the proper voltage and current requirements.

Mechanical - a connector to physically connect the computer to its peripherals.

Functional - hardware and software to convert computer data to bus data and vice
versa.

Operational -commands and data on the bus are interpreted in similar ways by all
devices in the system.

This interface card implements IEEE-488 interface standard and does all of these well.

Electrically, this card uses IEEE-488 bus drivers that are designed to drive long cables
and receive noisy data without error. The data, address, and control bus interface
between the board and the PC has been designed for minimum current loading and
maximum speed. Mechanically, it has a connector that is identical to all other
connectors of the IEEE-488 standard. This allows devices to be quickly and easily
added or removed from the system. The connector is designed to withstand over 1000
insertions and provide maximum electromagnetic radiation protection when used with
a shielded cable.

Functionally, this card provides the complete computer to peripheral interface by
using an IEEE-488 bus controller chip. The IEEE-488 bus chip provides complete
compliance with the latest update to the IEEE-488 standard. Full compliance with the
interface standard means that the PC can control any IEEE-488 compatible peripheral
or become a device that may be controlled by other computers. The PC can send data
to multiple devices simultaneously or instruct devices to send data to each without
supervision by the computer. Full compliance means that fourteen devices may be
attached to one interface card. Multiple inter face cards may be used in one PC.

CHAPTER 9 BUS TUTORIAL 65

Operationally, the interface is thoughtfully supported with professional software
support package. The software provides high level language extensions that support
IEEE-488 bus data and i command transmission and reception. The function mnemon-
ics are identical to those found in the IEEE-488 standard. These mnemonics are used
by most manufacturers of IEEE-488 compatible equip ment.

To solve your interface problems you need a standard that goes beyond hardware and
software to provide consistency between different equipment manufacturers. The
world’s largest manufacturers of instrumentation, computers, and computer peripher-
als have chosen the IEEE-488 bus as the means for transferring information between
dissimilar devices. This gives you the ability to attach a printer from one manufactur-
er, a plotter from another, and instruments from a third and know that the system will
work. When you compare this to the number of serial and parallel interface cards it
would take to support fifteen incompatible peripherals, the decision to use the IEEE-
488 bus becomes obvious.

The IEEE-488 bus is a carefully defined instrumentation interface which simplifies the
integration of instruments, peripherals and computers into systems. It minimizes
compatibility problems between devices and has sufficient flexibility to accommodate
future products. The bus has been formally accepted by the International Electrotech-
nical Commission (I.E.C.), as an international standard, and by the Institute of
Electrical and Electronic Engineers (I.E.E.E.) as an American standard.

The IEEE-488 bus employs a 16 line to interconnect up to 15 instruments. This bus is
normally the sole communication link between the interconnected units. Each
instrument in the bus is connected in parallel to the 16 lines of the bus. Eight of the
lines are used to transmit data and the remaining eight are used for communication
timing and control.

Data is transmitted on the eight data lines as a series of eightbit characters referred to
as “bytes”. Normally, a seven-bit ASCII (American Standard Code for Information
Interchange) code is used with the eighth bit available for a parity check, if desired.
Data is transferred by means of an interlocked “handshake” technique. This sequence
permits asynchronous communication over a wide range of data rates.

Communication between devices on the IEEE-488 bus employs the three basic
functional elements listed below. Every device on the bus must be able to perform at
least one of these functions:

1) LISTENER. A device capable of receiving data from other devices. Typical listeners
are printers, programmable power supplies, programmable signal generators and the
like.

66 PCL-848AB User's Manual

2) TALKER. A device capable of transmitting data to other devices. Typical talkers
are voltmeters,counters, audio analyzers and many other measurement instruments.

3) CONTROLLER. A device capable of managing communications over the IEEB-488
bus such as addressing and sending commands. A PC with the IEEE-488 interface is
typically a controller.

An IEEE-488 bus system allows only one device at a time to active talker, but it
allows multiple listeners receiving the same data at the same time. Only one controller
can be active at a time.

9.2. Bus Structure

An IEEE-488 bus has 24 lines including 7 ground return lines and one shield line. The
16 lines with signals are 8 data lines, 3 handshake lines and 5 management lines.

9.2.1. IEEE-488 Connector Pin Assignment

The IEEE-488 standard uses 24 pin ribbon connector as the standard and the signal
assignment is :

DATA Lines Pin No. MANAGEMENT Lines Pin No.
---------------------------------- ---
DIO1 1 IFC 9
DI02 2 REN 17
DI03 3 ATN 11
DI04 4 SRQ 10
DI05 13 EOI 5
DI06 14
DI07 15 HANDS8AKE Lines Pin No.
DI08 16 ---

DAV 6
NRFD 7
NDAC 8

CHAPTER 9 BUS TUTORIAL 67

9.2.2. IEC-625 Connector Pin Assignment

The IEC-625 standard uses 25 pin D type connector as the standard and the signal
assignment is:

DATA Lines Pin No. MANAGEMENT Lines Pin No.
---------------------------------- ---
DIO1 1 IFC 10
DI02 2 REN 5
DI03 3 ATN 12
DI04 4 SRQ 11
DI05 14 EOI 6
DI06 15
DI07 16 HANDSHAKE Lines Pin No.
DI08 17 ---

DAV 7
NRFD 8
NDAC 9

9.3. Management Lines

The active controller manages all bus communications. The state of the ATN line,
driven by the controller, determines whether the data on the data lines will be
interpreted as a bus command or received by other devices as data. When ATN is true,
the IEEE-488 bus is in COMMAND mode. Otherwise, the bus is in DATA mode. In
COMMAND mode the controller is active and all other devices are waiting for
instructions. COMMAND mode instructions which can be issued by the controller
include:

1)Talk Address. A byte transmitted by the controller enables a specified device to
talk. Only one device can be the talker at a time. When a new talker is assigned, the
old one is disabled.

2)Listen Address. A byte transmitted by the controller enables a specified device to
listen. The IEEE-488 bus allows multiple listeners. When new listeners are assigned,
the old listeners are still active.

3)Universal Commands. All devices on the bus will respond to these commands
whether they are addressed or not.

4)Address Commands. These commands are recognized only by the devices that are
addressed as listeners. A few commands are recognized only by the talker.

5) Unaddress Commands. ASCII “?” unaddresses all listeners that have been previ-
ously addressed to listen. This command is called “Unlisten” (UNL). ASCII “ “
unaddresses any talker that has been previously addressed to talk. This command is
called “Untalk” (UNT).

68 PCL-848AB User's Manual

9.4. Bus Commands

In COMMAND mode, bus commands can be placed on the bus and sent to all
devices. These commands have the same meaning regardless of the kind of device.
Each device is designed to respond to those commands that have a useful meaning to
the device and will ignore all others. The operating manual of each device will state
those commands it can recognize.

Bus Command Table

Type Mnemo ASC Bex Purpose
------- --------- ------ ----- --

Universal LLO DC1 11 Local Lockout. Disable front panel local key of
the devices.

Universal DCL DC4 14 Device Clear. All devices are set to a known
state.

Universal PPU NAK 15 Parallel Poll Unconfigure.

Universal SPE CAN 18 Serial Poll Enable.

Universal SPD EM 19 Serial Poll Disable.

Address SDC EOT 04 Selective Device Clear. Clear the listeners to a
known state.

Address GTL SOE 01 Go To Local. Set all listeners into local mode.

Address GET BS 08 Group Execute Trigger. Trigger all listeners on
the bus.

Address PPC ENQ 05 Parallel Poll Configure. Configure a device to
respond to parallel poll.

Address TCT ET 09 Take Control. Transfer control to another
device.

Unaddress UNL ? 3F Unlisten. Unaddress the current listeners.

Unaddress UNT _ SF Untalk. Unaddress the current talker.

9.5. Servioe Request and Serial Polling

Some IEEE-488 devices have the ability to request service from the controller. A
device may request service when it has completed a measurement, or when it has
detected a critical condition, or for other reasons. An IEEE-488 device requests
controller service by setting the SRQ line low. The controller has to determine when
and how a service request will be serviced.

The following sequence is used to respond to a service request:

1) The controller checks for the presence of a service request.

CHAPTER 9 BUS TUTORIAL 69

2) If a service request i8 present, the controller sets the serial poll mode. The serial
poll mode is initiated by the r controller sending the command SPE (Serial Poll
Enable).

3) The controller sequentially polls those devices that may a have requested service.
Each polled device responds with the status byte. The controller then checks the bit
6 (weight 64) of the byte to see if service was requested by this device.

4) For each device that has requested service, the controller takes appropriate action.

5) When all devices have been polled, the controller terminates the serial poll mode by
issuing the command SPD (Serial Poll Disable).

The full sequence of operations is not necessary in all cases. If the reason for a request
is simple and the controller knows the action, serial polling is not necessary. For
software convenience, the controller sends SPD just after the status byte is read by
the computer.

9.6. Parallel Polling

Parallel polling permits the status of up to eight devices on the bus to be checked
simultaneously. Each device is assigned a data line (DIO1 to DI08) during parallel poll
configure. When the controller conducts a parallel poll (ATN and EOI set low at same
time), the device sets the assigned data line low or high to indicate if it requires service.
If more than eight devices are used with their parallel poll capability, some of them can
share one data line. Very few instruments have the capability to respond to a parallel
poll. Therefore, you can neglect the parallel poll now and only study it when it
becomes necessary.

9.7. Code Summary

A code assignment is shown in the table on the next page. These assignments apply
only in command mode. In data mode there are no specific code assignments and data
strings are recognized by the devices which receive the data.

The set of codes labeled “Primary Command Group” are the codes commonly used to
communicate on the bus. The “Secondary Command Group” is used when addressing
extended listeners and talkers, or enabling the Parallel Poll Mode (PPE).

70 PCL-848AB User's Manual

CHAPTER 9 BUS TUTORIAL 71

9.8. Randshake Lines

Each character byte transferred on the bus data lines employs the three wire hand-
shake sequence. This sequence has the following characteristics:

1) Data transfer is asynchronous. Data can be transferred at any rate suitable for the
devices operating on the bus. The devices wait for others to complete a byte
transfer.

2) Devices with different input and output speeds can be interconnected. Data
transfer rate is determined by the 3 slowest active device.

3) Multiple devices can accept data at the same time.

The following definitions are used when discussing IEEE-488 bus:

1) SOURCE. A device sending information on the bus in either the command or data
mode.

2) TALKER. A device addressed to talk in the data mode.

3) ACCEPTOR. A device receiving information on the bus in either the command or
data mode.

4) LISTENER. A device addressed to listen in the data mode.

The handshake lines have the following name and meaning:

DAV Data Valid
NRFD Not Ready For Data
NDAC Not Data Accepted

The handshake timing sequence is shown as following:

72 PCL-848AB User's Manual

Handshake Timing Sequence

CHAPTER 9 BUS TUTORIAL 73

9.9. Other Bus Lines

The three remaining bus lines are:

1) REN (Remote Enable) The system controller sets REN low and then addresses the
devices to listen before they will operate under remote control.

2) IFC (Interface Clear) Only the system controller can activate this line. When IFC is
set true, all talkers, listeners and active controllers go to their inactive states.

3) EOI (End or Identify) This line is used to indicate the end of a multiple byte
transfer sequence or, in conjunction with ATN, to execute a parallel poll sequence.

9.10. Bus Operating Considerations

When a device is powered on during system operation, it may activate IFC and cause
the active controller on the bus to halt with an error. The controller must send IFC to
regain active control.

Prior to addressing new listeners it is recommended that all previous listeners be
unaddressed using the UNL command (?).

only one talker can be addressed at a time. When a new talker is addressed the former
talker is automatically unaddressed.

The maximum cumulative length of the IEEE-488 bus cable in any system must not
exceed more than 2 meters of cable per device or 20 meters, whichever is less, unless
bus Expanders or Extenders are used.

For more information about the IEEE-488 bus, please refer to the IEEE reference
document.

74 PCL-848AB User's Manual

10. ASCII TABLE

CHAR BINARY UEX DEC COMMAND CHAR BINARY HEX DEC COMMAND

NULL 0000000 00 0 SPACE 0100000 20 32 LA0
SOU 0000001 01 1 GTL ! 0100001 21 33 LA1
STX 0000010 02 2 “ 0100010 22 34 LA2
ETX 0000011 03 3 # 0100011 23 35 LA3
EOT 0000100 04 4 SDC $ 0100100 24 36 LA4
ENQ 0000101 05 5 PPC % 0100101 25 37 LA5
ACK 0000110 06 6 & 0100110 26 38 LA6
BELL 0000111 07 7 ‘ 0100111 27 39 LA7
BS 0001000 08 8 GET (0101000 28 40 LA8
UT 0001001 09 9 TCT) 0101001 29 41 LA9
LF 0001010 OA 10 * 0101010 2A 42 LA10
VT 0001011 OB 11 + 0101011 2B 43 LA11
FF 0001100 0C 12 , 0101100 2C 44 LA12
CR 0001101 0D 13 - 0101101 2D 45 LA13
50 0001110 OE 14 . 0101110 2E 46 LA14
SI 0001111 0F 15 / 0101111 2F 47 LA15
DLE 0010000 10 16 0 0110000 30 48 LA16
DC1 0010001 11 17 LLO 1 0110001 31 49 LA17
DC2 0010010 12 18 2 0110010 32 50 LA18
DC3 0010011 13 19 3 0110011 33 51 LA19
DC4 0010100 14 20 DCL 4 0110100 34 52 LA20
NAK 0010101 15 21 PPU 5 0110101 35 53 LA21
SYNC 0010110 16 22 6 0110110 36 54 LA22
ETB 0010111 17 23 7 0110111 37 55 LA23
CAN 0011000 18 24 SPE 8 0111000 38 56 LA24
EM 0011001 19 25 SPD 9 0111001 39 57 LA25
SUB 0011010 1A 26 : 0111010 3A 58 LA26
ESC 0011011 1B 27 ; 0111011 3B 59 LA27
FS 0011100 1C 28 < 0111100 3C 60 LA28
GS 0011101 1D 29 = 0111101 3D 61 LA29
RS 0011110 1E 30 > 0111110 3E 62 LA30
US 0011111 1F 31 ? 0111111 3F 63 UNL

CHAPTER 10 ASCII TABLE 75

CHAR BINARY UEX DEC COMMAND CHAR BINARY HEX DEC COMMAND

@ 1000000 40 64 TA0 1100000 60 96 SC0
A 1000001 41 65 TA1 a 1100001 61 97 SC1
B 1000010 42 66 TA2 b 1100010 62 98 SC2
C 1000011 43 67 TA3 c 1100011 63 99 SC3
D 1000100 44 68 TA4 d 1100100 64 100 SC4
E 1000101 45 69 TA5 e 1100101 65 101 SC5
F 1000110 46 70 TA6 f 1100110 66 102 SC6
G 1000111 47 71 TA7 g 1100111 67 103 SC7
H 1001000 48 72 TA8 h 1101000 68 104 SC8
I 1001001 49 73 TA9 i 1101001 69 105 SC9
J 1001010 4A 74 TA10 j 1101010 6A 106 SC10
K 1001011 4H 75 TAll k 1101011 6B 107 SCll
L 1001100 4C 76 TA12 1 1101100 6C 108 SC12
M 1001101 4D 77 TA13 m 1101101 6D 109 SC13
N 1001110 4E 78 TA14 n 1101110 6E 110 SC14
O 1001111 4F 79 TA15 c 1101111 6F 111 SC15
P 1010000 50 80 TA16 p 1110000 70 112 SC16
Q 1010001 51 81 TA17 q 1110001 71 113 SC17
R 1010010 52 82 TA18 r 1110010 72 114 SC18
5 1010011 53 83 TAl9 s 1110011 73 115 SCl9
T 1010100 54 84 TA20 t 1110100 74 116 SC20
U 1010101 55 85 TA21 u 1110101 75 117 SC21
V 1010110 56 86 TA22 v 1110110 76 118 SC22
W 1010111 57 87 TA23 w 1110111 77 119 SC23
X 1011000 58 88 TA24 x 1111000 78 120 SC24
Y 1011001 59 89 TA25 y 1111001 79 121 SC25
Z 1011010 SA 90 TA26 z 1111010 7A 122 SC26
[1011011 SB 91 TA27 { 1111011 7B 123 SC27
\ 1011100 SC 92 TA28 1 1111100 7C 124 SC28
] 1011101 SD 93 TA29 } 1111101 7D 125 SC29
^ 1011110 SE 94 TA30 ~ 1111110 7E 126 SC30
_ 1011111 SF 95 UNT DEL 1111111 7F 127 SC31

76 PCL-848AB User's Manual

11. NEC7210 RBAD / WRITE REGISTSR

Read Register Bit Contents

7 6 5 4 3 2 1 0

0 Data In DI7 DI6 DI5 DI4 DI3 DI2 DIl DI0

Status 1 CPT APT DET END DEC ERR DO DI

Status 2 INT SRQI LOK REM CO LOKC REMC ADSC

3 Serial Poll S8 PEND S6 S5 S4 S3 S2 S1

4 Address CIC ATN SPMS LPAS TPAS LA TA MJMN

5 Command PassCPT7 CPT6 CPT5 CPT4 CPT3 CPT2 CPT1 CPT0
Through

6 Address 0 X DT0 DL0 AD50 AD40 AD30 AD20 AD10

7 Address 1 EOI DTl DL1 AD51 AD41 AD31 AD21 AD11

Write Register Bit Contents

7 6 5 4 3 2 1 0

0 Hyte Out BO7 BO6 BO5 BO4 BO3 BO2 BO1 BO0

1 Interrupt CPT APT DET END DEC ERR DO DI
Mask 1

2 Interrupt 0 SRQI DMAO DMAI CO LOKC REMC ADSC
Mask 2

3 Serial Poll S8 rsv S6 S5 S4 S3 S2 Mode

4 Address ton lon TRM1 TRM0 0 0 ADM1 ADM0
Mode

5 Auxiliary CNT2 CNT1 CNT0 COM4COM3COM2COM1 COM0
Mode

6 Address 0/1 ARS DT0 DL AD5 AD4 AD3 AD2 AD1

7 End of String EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

CHAPTER 12 SUMMARY OF THE IEEE-488 LIBRARY FUNCTIONS 77

12. SUMMARY OF THE IEEE-488 LIBRARY FUNCTIONS

Routins Offset Parameters Activity

ABORT 9 None Aborts all bus activity by pulsing the IFC
line.

DEVCLR 15 ADDR% Device clear or selective device clear.

DEVICE 57 ADDR%,PORT% Replaces an LPTn: or COMn: port with an
IEEE-488 device.

ENTER 6 ADDR%,D$ Enters data from a device.

ENTERA 51 ADDR%,DATASEG%, Enters a long string from a

LENGTB% device.

EOL 12 ADDR%,OVTEOL%, Sets the terminators of input

OUTEOL$,INEOL%, and output string of a device

INEOLBYTE%

INIT 0 IOPORT%,MYADDR%, Initializes the interface and

SETTING% sets parameters.

LLO 18 None Local Lockout.

LOCAL 21 ADDR% Sets a device to local mode or releases the
REN line.

OUTPUT 3 ADDR%,D$ Outputs data to a device.

OUTPUTA 54 ADDR%,DATASEG%, Outputs a long string of data

LENGTB% to a device.

PPOLL 24 RESPONSE% Parallel Poll.

PPOLLC 27 ADDR%,CONFIG% Parallel Poll Configure.

PPOLLU 30 ADDR% Parallel Poll Unconfigure.

RENOTE 33 ADDR% Sets a device to remote mode and sets the
REN line.

SEND 36 CMD$ Sends the IEEE-488 mnemonics commands
to the bus.

78 PCL-848AB User's Manual

Routins Offset Parameters Activity

SPOLL 39 ADDR%,RESPONSE% Serial Poll.

STATUS 42 CONDITION%,5% Reads the status of the interface.

TIMEOUT 45 T% Sets timeout interval.

TRIGGER 48 ADDR% Triggers a device or devices

ERRPTR 60 IOERR%,IOCOUNT% Assign variables for error number and count
of string bytes.

	Contents
	1. GENERAL INFORMATIQN
	1.1. Introduction to the Product
	1.2. Description of the Documentation
	2. INSTALLATION
	2.1. Inspection
	2.2. Switch and Jumper Setting
	2.2.1. I/O Base Address and Wait State Setting
	2.2.2. Firmware Address Setting
	2.2.3. Operating Mode Setting
	2.2.4. DMA Level Setting
	2.2.5. Interrupt Level (IRQ) Setting
	2.3. Installing the Card
	2.3.1. Preparation
	2.3.2. Installing the Card into a PC
	2.3.3. Function Check
	3. PROGRAMMING REFERENCE
	3.1. Introduction
	3.2. Using the BASIC CALL Statement
	3.3. Using QuickBASIC and BASIC Compiler
	3.4. The IEEE-488 Driver Routines
	3.4.1. AHORT
	3.4.2. DEVCLR (Device Clear) Purpose :
	3.4.3. DEVICE
	3.4.4. ENTER Purpose :
	3.4.5. ENTERA
	3.4.6. EOL
	3.4.7. INIT
	3.4.8. LLO
	3.4.9. LOCAL
	3.4.10. OUTPUT Purpose :
	3.4.11. OUTPUTA
	3.4.12. PPOLL
	3.4.13. PPOLLC
	3.4.14. PPOLLU
	3.4.15. REHOTE
	3.4.16. SEND
	3.4.17. SPOLL
	3.4.18. STATUS Purpose :
	3.4.19. TIMEOUT Purpose :
	3.4.20. TRIGGER Purpose :
	3.4.21. ERRPTR
	4. PROGRAMMING TECBNIQUES
	4.1. Interactive Data Transfer
	4.2. Set IEEE-488 Printer
	4.3. Voltage Measurement with a DVM
	4.4. AD500 PMU Programming
	4.5. Multiple Device Triggering
	4.6. Interrupt Handling
	5. ADVANCED PROGRAMM1N~ TECBNIQUES
	5.1. Direct Memory AcceAs (DMA)
	5.2. Transfer Speed
	5.3. Interrupt
	5.4. Hore about the SEND Command
	6. DIGITAL OUTPUT
	7. TBEORY OP OPERATION
	7.1. Introduction
	7.2. Block Diagram Description
	8. TROUg3LB5BOOTING
	8.1. Introduction
	8.2. Periodia Maintenance
	8.3. Troubleshooting Procedure
	8.4. Part List
	9. BUS TUTORIAL
	9.1. General Bus Description
	9.2. Bus Structure
	9.2.1. IEEE-488 Connector Pin Assignment
	9.2.2. IEC-625 Connector Pin Assignment
	9.3. Management Lines
	9.4. Bus Commands
	9.5. Servioe Request and Serial Polling
	9.6. Parallel Polling
	9.7. Code Summary
	9.8. Randshake Lines
	9.9. Other Bus Lines
	9.10. Bus Operating Considerations
	10. ASCII TABLE
	11. NEC7210 RBAD / WRITE REGISTSR
	12. SUMMARY OF TBE IEEE-488 LIBRARY FUNCTIONS

	Figures
	
	Fig. 2.2 Location of switches and jumpers
	
	Fig. 7-1 PCL-848A/B Block Diagram

